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ABSTRACT

The efficiency, capability, and evolution of a lunar base will be largely
dependent on the transportation system that supports it. Beyond Space Station
in low Earth orbit (LEO), a Lunar-derived propellant supply could provide the
most important resource for the transportation infrastructure. The key to an
efficient Lunar base propulsion system is the degree of Lunar self-sufficiency
(from Earth supply) and reasonable propulsion system performance. Lunar surface
propellant production requirements must be accounted in the measurement of effi-
ciency of the entire space transportation system. Of all chemical propellant/
propulsion systems considered, hydrogen/oxygen (H/0) OTVs appear most desirable,
while both H/0 and aluminum/oxygen propulsion systems may be considered for the
lander. Aluminized-hydrogen/oxygen and Silane/oxygen propulsion systems are
also promising candidates, Lunar propellant availability and processing tech-
niques, chemical propulsion/vehicle design characteristics, and the associated
performance of the total transportation infrastructurekgr;\reviewed, conceptual
propulsion system designs and vehicle/basing concepts, éﬁd technology require-

ments are assessed in context of a Lunar Base mission scenario.
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FOREWORD

This document represents Volume 1, the Final Report of the Lunar Surface
Base Propulsion System Study, Contract No. NAS9-17468. Volume 1 details the
study analyses and results. Volume 2 is the Lunar Base Propellant Manual which
comprises the initial compilation of data for processing and use of Lunar-
derived propellants. The contract effort was initiated on 15 January 1986 and

continued through 15 February 1987.

The study was conducted by the Astronautics Corporation of America -
Technology Center in Madison, Wisconsin. Aerojet TechSystems of Sacramento,
California was a subcontractor contributing various propulsion and propellant
analyses. Additional contributions were made by the Engineering Mechanics,
Nuclear Engineering, and Chemistry Departments of the University of

Wisconsin-Madison.

Comments or questions concerning this study effort should be directed to
the NASA Technical Monitor, Leo R. Johnson at the NASA/Johnson Space Center; or
to the Astronautics Project Manager, Ronald R. Teeter; or to the Deputy Project

Manager, Thomas M. Crabb:

Leo R. Johnson Ronald R. Teeter
Mail Code: EP4 Thomas M. Crabb
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Administration Technology Center
Johnson Space Center 5800 Cottage Grove Road
Houston, TX 77058 Madison, WI 53716
(713) 483-9018 (608) 221-9001
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1.0 INTRODUCTION AND CONCLUSIONS

The moon is relatively close on interstellar and even on solar svstem sca-
les. However, on the scale of existing space transportation infrastructure,
travel to the moon is very resource intensive and thus costly. With our present
Earth-based transportation system, the transport of useful payload to the Moon
requires that all equipment, consumables, and man-power be delivered from Earth.
Use of Lunar resources to provide propellants provides two major assets to sup-
port this transportation burden: (1) a Lunar 'gas station" to refuel vehicles
returning to Earth, and (2) another source of propellant that can be delivered
to Earth orbit. The first reduces the size, mass, and cost of Earth-Moon
transportation vehicles. Because of the lower gravity on the Moon, the second
asset may reduce the delivery cost of propellant requirements in Earth orbit.

Much less energy is required to transport mass from the moon to low Earth orbit

(LEO) than from Earth to LEO.

The Apollo missions enabled man to briefly visit the Moon, but such a
transportation system must be enhanced if routine, long-term, Earth-Moon
missions are to be affordable. The development of the Space Shuttle and the
planned development of the Space Station are the first steps. Key goals of the
Lunar~derived propellant production and associated Lunar propulsion systems in
this study are to reduce the cost and increase the ease of transportation to the
Lunar surface. In future decades, the 1980s may be considered the turning point
in man's space exploration if Lunar-related analyses, studies and experiments
are supported. The "extraterrestrial imperative'", as worded by Krafft Ehricke,
will have begun with the development of the low Earth orbit Space Station and a

multi~national commitment to space.

A key stepping stone in development of the Earth-Moon transportation system
is the Moon itself. Lunar resources and relatively low Lunar gravity provide an
excellent environment for transportation base, propellant supply, science,
industrial manufacturing/processing, and research nodes external to the FEarth.
However, any Lunar activity such as propellant processing to support the
transportation system requires resources (e.g., equipment, machinery, facili-
ties, and consumables). Therefore, self-sufficiency is the ultimate goal of any
extraterrestrial activity. Key drivers for processing Lunar-derived propellants

include minimal Earth-derived resources, Lunar availability of processing raw
1
AstronautiCs CORPORATION OF AMERICA — TECHNOLOGY CENTER



materials, simplistic recycling of any consumed materials, low power/thermal
requirements, and a high acquisition efficiency of the propellant ingredients.
Another key driver of Lunar propellant processing is the value of the bipro-
ducts. In many cases, a single product (such as oxygen) is desired; however,
many process techniques exist that will yield not only oxygen but also metals,
fuels, and metal/silicate oxides in addition to oxygen with only a minor addi-
tional resource burden. Prior to actual processing, beneficiation techniques
could be coupled with solar wind gas extraction techniques to derive the

existing volatiles such as hydrogen, helium, and nitrogen from the Lunar rego-

lith.

This report addresses concepts of Earth-Moon transportation and the use of
Lunar resources to produce propellants for those concepts. The overall objec-
tive of the study was to address a wide range of transportation options, and to
identify economical alternatives for transportation between low Earth orbit and
the Lunar surface. The approach to this study included five tasks, shown in
Figure 1-1 with task interrelationships. Task 1 identified and analyzed the
propellants, their sources, and the resource requirements involved in processing
those propellants. Task 1 results are discussed in Section 2.0 of this report.
Task 2 (Section 3.0) involved designing and analyzing vehicle systems, including
the propulsion and vehicle subsystems that use these propellants. Task 3
(Section 4.0) involved assessing propellant processing techniques and vehicle
families in an overall Lunar surface base mission model and scenario to develop
life cycle costs and required mass flow from the Earth. Task 4 (Section 5.0)
evaluated the technologies of propellant processing techniques, propulsion
systems and vehicle systems. The scope of the effort is shown in Figure 1-2.
Chemical vehicle propulsion and propellant supply techniques were emphasized in
this study. Non-chemical vehicle propulsion and propellant supply techniques
may have an equivalent or a supportive role in the total Earth-Moon transpor-

tation infrastructure and should be addressed in a future study.

The transportation system needed to support a Lunar surface base is not far
beyond the current state-of-the-art. Lunar resources can be acquired to supple-
ment and improve the efficiency of the transportation infrastructure in wmany
ways. From a transportation standpoint, Lunar oxygen acquisition stands highest
on the 1list of 1initial objectives for any Lunar surface base activity.

Production of Lunar oxygen for any chemical rocket propulsion system could save

2
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about 50% of the required Earth launch mass. Rocket fuels also may be acquired
on the Lunar surface. Hydrogen is available, but at very low levels of con-
centration., Other fuels are more plentiful, but they exhibit lower performance
characteristics than hydrogen. The best Lunar fuels are hydrogen, aluminum,
aluminumized-hydrogen, and silane in decreasing order of benefit to ULunar
transportation. The use of Lunar hydrogen may save up to 30% of the Earth
launch mass over the same system using Earth-supplied hydrogen. The combination
of a hydrogen/oxygen OTV and a hydrogen/oxygen Lunar lander is the best pro-
pulsion option, if both hydrogen and oxygen can be acquired on the Moon. If
Lunar hydrogen cannot be recovered in sufficient quantities then the use of

other Lunar fuels (aluminum, silane) with Lunar oxygen in the lander appear

attractive. Due to their performance limitations, those fuels do not4appear’

attractive for the OTV. A hydrogen/oxygen OTV lander system with only Lunar’

oxygen available performs well but not as well as hydrogen/oxygen OTV coupled
with a lower Isp aluminum/oxygen lander, if both Aluminum and oxygen are derived

from the Launch surface.

Generally, the availability of Lunar oxygen reduces the burden of engine
performance and engine/vehicle system technologies. Performance, cost, and
Earth launch mass are less affected by variations in propulsion system specific

impulse (Isp) and other design characteristics when Lunar oxygen is available.

The Lunar surface base mission scenario is possible with moderate exten-
sions of existing technology. To achieve an economically attractive transpor-
tation system space basing is required. Also, either the OTV must be equipped
with an efficient aerobrake, or Lunar oxygen must be utilized. Lunar base
missions may be conducted without Lunar oxygen propellant delivery if a suitable
aerobrake technology is developed. An aerobrake of specific mass much less than
40% of the re-entry weight is needed. Once Lunar oxygen becomes available the
aerobrake is not as beneficial in reducing Earth launch mass, but remains econo-
mically attractive. To reduce Earth launch mass to a reasonable level, the
aerobrake is a required technology without Lunar oxygen availability and Lunar
oxygen is a required technology when aerobrakes are not present. If after Lunar
propellant becomes available a market develops elsewhere, such as low Earth

orbit, a very efficient aerobrake again may be very attractive,

Results of the propellant processing assessment indicate that hydrogen

reduction by far is the best technique to supply Lunar oxygen, if that is the

5
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only Lunar material required. Lunar oxygen can reduce Earth launch mass by more
than 50% of a given propulsion system over an entire mission model. However, a
Lunar base will require a great deal more than just oxygen to be self-
sufficient. Thus propellant processing techniques that are synergistic with
respect to other needs should be considered. Processing techniques such as acid
leach and vapor ion separation may be valuable to the entire Lunar surface base,
not just the transportation system. For the processes considered, typical
electrical energy consumed is on the order of 50 to 100 kilowatt hours for 10 MT
of oxygen produced. System weights may range from 1 to 10 or more metric tons.
Thermal energy requirements for 10 MT of oxygen produced can range from 10,000
kilowatt hours to hundreds of thousands of kilowatt hours, depending on the
amount of soil being processed. Resources consumed for various processes may
range from minute amounts for a process such as hydrogen reduction, to substan-

tial amounts for acid leach and magma electrolysis processes.

Results from the vehicle propulsion analyses resulted in mass fractions
ranging from .87 to .97. High mass fractions result from large vehicle concepts
with requirements for extreme amounts of propellant. The baseline hydrogen/
oxygen propulsion system was characterized by an Isp of 470 seconds and a mix-
ture ratio of 5.5. Other propulsion systems addressed included aluminum/oxygen

(hybrid and slurry), silane, and aluminumized-hydrogen/oxygen engine concepts.

Systems trades and sensitivities were addressed on the percent aerobrake
mass, mixture ratios, specific impulses, payload masses, number of engines per
vehicle, and the percent of Lunar propellant produced. Earth launch mass and
total transportation costs were the figures of merit used in evaluating pro-
pellant production techniques and vehicle families. The lowest calculated total
transportation cost, including Earth launch mass cost, DDT&E and production

costs for the vehicles was approximately $6 billion.

Significant results were found in the trade-off analyses of aerobrakes, and
high mixture ratio propulsion systems. High mixture ratios (greater than about
8) actually increase the amount of Earth-derived fuel and therefore are not
beneficial. However, slight increases in mixture ratio (from 6 to less than 8)
may still be beneficial in a Lunar-derived oxygen scenario. Aerobrakes can pro-
vide a significant amount of savings in Earth launch mass. Once developed, an

aerobrake reduces the Earth launch mass by approximately 25% when no Lunar oxy-

6
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gen is available; and reduces Earth launch mass by 157 when Lunar oxygen is

available.

Results indicate no new technologies are definitely required to produce
Lunar oxygen on the Moon. However, for a variety of reasons, new technology
options should be explored. Other than space basing, no new technologies are
needed for hydrogen/oxygen propulsion systems, Current technology work on
aerobrakes will support aerobrakes for Lunar return OTVs. Nothing beyond the
current technology work of NASA OTV studies is required for near-term Lunar base
operation. New technologies identified within the scope of this study that
should be pursued are: (1) new and synergistic propellant processing techniques
concentrating on consumable recycling; (2) space servicing/basing and propellant
supply operations required for a refurbishable and reusable OTV and lander
system; and (3) aluminum, silane fueled propulsion system feasibility studies and

experiments.

7
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2.0 LUNAR BASE PROPELLANT ALTERNATIVES

One of the major objectives of this study was to identify and characterize
chemical propellants that could be practically produced on the Lunar surface
from raw Lunar materials. This section of the report (which correlates to Task
1, "Analyze Propellants/Sources'") identifies the full range of propellant sour-
ces from Lunar resources and Space Shuttle scavenging, and defines the pro-
cessing techniques and requirements of producing such propellants. An initial
list of propellants was developed and later refined based on considerations
including: Lunar resource availability, production technique capabilities,
storage and handling, and predicted performance when used in a propulsion
system. Of the propellants investigated, oxygen was the most valuable oxidizer
and Lunar-derived propellant. Hydrogen and aluminumized-hydrogen were the most
valuable fuels identified. Silane and Aluminum were also addressed as promising
Lunar-derived fuels but did not prove to be as beneficial as the first two fuels

mentioned.

This task was scoped to include all aspects of propellant production, but
largely concentrated on the actual chemical production techniques which are the
drivers of raw material mining and preprocessing requirements. Very efficient,
self-sufficient processes have been developed for a single element such as oxv-
gen (e.g., Hydrogen Reduction process). However, production of a single product
yield may not be as valuable in the context of an overall Lunar base scenario as
a process that yields many useful products. "Synergistic processing'” of
multiple products may be used to produce both oxidizers and fuels. Synergistic

processing is discussed in more detail in Section 2.5.

The identification of propellants was extensive in terms of liquid pro-
pellant candidates. Propellants for solid and hybrid systems were not given as
much effort. Criteria for the evaluation of the propellants, and the produc-
tion, storage and performance estimates were developed independently, This cri-
teria was used to initially screen out candidates that are extremely
incompatible with a Lunar-based propulsion system. The candidates that made it
through the initial screen were then evaluated in terms of their processing
techniques, storage requirements and predicted performance when used in a pro-
pulsion system. The candidates that passed this screening were then recommended

for further analysis in propulsion systems. Processing requirements and total

8
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resource consumption for propellant production were estimated on these pro-
pellant candidates for input into the system tradeoff studies (as reported in
Section 4.0). Technology requirements for processing, storage and use of the
propellants were identified for input into the technology development plan deve-

loped in Task 4 which is described in Section 5.0.

The remainder of this Section describes work done specifically on Lunar
propellant production. Section 2.1 provides a brief overview of the Lunar
resources. The propellant alternatives are discussed in Section 2.2. Section
2.3 describes processing techniques found to be the most favored for ULunar
resource processing. Section 2.4 describes the evaluation criteria used for
evaluation of the propellant/processing techniques, and Section 2.5 discusses

the potential for synergistic processing and associated benefits.

2.1 Lunar Resource Characterization

Many material needs of a Lunar base may be satisfied using processed Lunar
resources. Elements such as oxygen, aluminum, iron and silicon exist in the
Lunar regolith. Concentrations of these major elements can be seen in Table
2-1. In addition to the elements listed in Table 2-1, many elements, such as
solar wind gases, are‘ present 1in the Lunar regolith in much smaller con-
centrations. The concentration of these minor elements can be seen in Table F.5

of Appendix F.

Generally, Lunar resources may provide many useful applications for support
of a Lunar base scenario. Criswell and Waldron have noted many uses of poten-
tial Lunar products in their chapter on Lunar Utilization in Volume 1I of Space
Industrialization (Mandell, 1985). These applications in addition to a few

developed during this study are shown in Table 2-2.

For this study, propellant processing approaches were analyzed for pro-
cessing mare regolith, Mare regolith was chosen because of the quantity
available and its easy accessability. Composition of each of the four major
constituents of the mare and concentrations of each Lunar ore in the mare rego-

lith are shown in Table 2-3.

2.2 Propellant Candidates
Many propellant candidates have been researched, tested, or used here on’
Earth. Our initial listing of propellant alternatives was developed exclusive

of Lunar material availability or other criteria to enable a broad-based look at
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TABLE 2-1.

Element

Ca

Na

MAJOR ELEMENTAL COMPOSITION OF LUNAH REGOLITH

Mare Reolith
7.9
5.8
13.2
6.8
3.1
20.4

41.3

10

Highlands

10.7

4.6

0.072

0.078

0.48

Basin Ejecta
7.70
6.1
8.7

9.8

21.8

43.3
0.076
0.24

0.38
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TABLE 2-3. LUNAR ORE COMPOSITION IN LUNAR MARE REGOLITH

PYROXENE -~ 50% of Mare Regolith
Ca0-5i09
Mg0-8i0y
Fe0-5i0,
Al703°Si09

Ti0*8i0>
OLIVINE - 15% of Mare Regolith
2Mg0-Si0,y

2Fe0-8i09

PLAGIOCLASE or ANORTHITE - 20% of Mare Regolith

Ca0°Al1,04-281i09

ILMENITE - 15% of Mare Regolith

Fe0-:Ti0y
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propellant usage on the Moon. Screening criteria were then used to narrow down
this list of propellant characteristics to a workable number. The rationale
behind the initial criteria is as follows: (1) easy access necessary raw
materials from Lunar resources; (2) processability of the propellants; and (3)
minimal equipment for the processing of propellants. Having an adequate source
of raw materials is a must in any category; therefore, a plus was required in
that initial screening criteria for the propellant to be retained for further
study. The operational and initial setup requirements for the process tech-
niques are of secondary importance and were considered in the evaluation only
after adequate raw material availability was determined. Figure 2-1 shows the
initial list of propellant candidates which were screened out to a secondary
list and finally to a third list for which processing techniques were investi-
gated and more detailed evaluation of these propellants through developed goals

and criteria will be discussed in Sections 2,3 and 2.4, respectively.

The initial screen shown in Figure 2-1 is based on: (1) Lunar resource
availability of the elements within the propellant; (2) the operational pro-
cessing requirements based on earth based production techniques; and (3) the
initial setup for Lunar base processing. The list of propellant candidates was
narrowed a second time based on vehicle and engine design information and the
system tradeoff analysis described in Sections 3.0 and 4.0. These will be

discussed in Section 2.4 under propellant rankings.

2.3 Propellant Processing Techniques

This section includes results of analyses of potential Lunar base pro-

pellant processing scenarios.
Each propellant processing technique involves:

1. Mining/Beneficiation of raw material
2. Preprocessing
3. Processing desired propellants/products

4, Separating and collecting desired propellants/products

The processing schemes considered include:

o Solar Wind Gas Extraction from Lunar regolith
o Hydrogen Reduction of Ilmenite
o Magma Electrolysis of Ilmenite

13
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o Carbochlorination of Anorthite
o HF Acid Leach
o Vapor-Ion Separation

o The Carbothermal Process

These processes were selected because of their potential for Lunar application
and because a reasonable amount of data exists. Additional processes may be
specifically designed for a given set of products. The initial analyses con-
tained here will assist in development of future process design requirements.
Table 2-4 summarizes the resource requirements for each of these processing
candidates. Many of these processing scenarios involve similar mining and
preprocessing requirements. Various mining and beneficiation techniques will be
summarized in Section 2.3.1. Detailed propellant processing scenarios are

discussed in Section 2.3.2.

2.3.1 Mining/Beneficiation and Preprocessing

Mining requirements vary from process to process depending on the regolith
requirement for the processing scheme. Several mining scenarios for a Lunar
base were analyzed in the 1977 Summer Study at NASA Ames Research Center
(Williams, 1977). A mining system for small scale Lunar regolith collection may
include a bladed scraper which transfers the regolith to a conveyor system.
Trucks would then transport the regolith from stockpiles to a site where the
regolith would be beneficiated. Another technique consisting of an automated
system using a moderate-sized bucket-wheel excavator feeds the regolith to a
shiftable conveyor system. Williams estimates that some components of a bucket-
wheel excavator would require replacement every 150-200 hrs operating time.
Typical mining operation would involve a shiftable conveyor running parallel to
the strip to be mined. Strip sizes considered are 2m long and are mined to a
depth of 2m (Williams, 1977). Mining techniques to date are not well defined

but are similar to most processing techniques.

Once Lunar regolith is mined, it must be preprocessed, or beneficiated, to
meet the requirements of the processing scheme. Some processes require the
regolith to be sized to certain specifications. Other processes require separa-
tion of the Lunar ores in the mare; anorthite, ilmenite, olivine, pyroxene; or
separation of individual metal silicates. Coarse sieves may be used to size
Lunar regolith. Two other methods are used for more accurate sizing of regolith

grains and separation of Lunar ores from the mare. These methods. are
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electrostatic and magnetic separation. These separation techniques distinguish

between mass—charge ratios, and other material properties.

2.3.2 Propellant Processing

Process methods include <chemical reduction/oxidation, electrolysis,
vaporization/ionization, pyrolisis, hydrolysis or a combination of these.
Chemical reduction/oxidation methods will involve some consumption of Earth
imports. Many of the needed Earth imports have the potential to be obtained
from Lunar sources. Electrolysis methods have high energy requirements but
often do not require chemical imports from Earth, Though terrestrial
vaporization/ionization techniques have not been fully developed, processes
using these techniques may prove to have the greatest potential for establish-
ment of a Lunar base with minimal Earth support. Pyrolisis and hydrolysis are

the simplest processing techniques and is wutilized within most process sce-

narios.

2.3.2.1 Solar Wind Gas Extraction
A variety of useful Lunar resources are available as solar wind gases
embedded in the top layer of the Lunar regolith. Some potentially available
gases include hydrogen, helium, nitrogen, neon and argon. Neon and argon could
be used in electric propulsion concepts. Helium-3 is a valuable commodity for
fusion power cycles applicable to propulsion, however these propulsion concepts
are not within the scope assessed in this report. These gases may be thermally

released from Lunar regolith.

It is questionable how Lunar conditions will affect desorption rates and
thermal release patterns or how the handling of Lunar samples will affect solar
wind gas concentrations. The relative availability of solar wind gases in the

mare regolith can be seen in the table below.

SOLAR WIND GAS EXTRACTION POTENTIAL

g/gHy
Hydrogen 1
Helium 0.5
Helium-3 0.0002
Nitrogen 1.7
Neon 0.05
Argon 0.01
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Thermal release patterns for most solar wind related species show peaks at

600C and 1200C (Blanford, 1982).

Extraction of the solar wind gases may be done in~situ, Figure 2-2 shows
the process schematic, Extraction hardware must be mobile and easy to maintain
so that it may traverse large regolith areas. The processing system would be
moved to a specific mining site and would then heat the regolith to about 600C.
Partial pressures of all gaseous components of the regolith would create a lami-
nar gas flow into a collection subsystem. After the gases are collected, the
gaseous mixture is passed through a series of condensers to separate the various
species. The gases will be collected in reverse order of their boiling points.

Boiling points for several solar wind gases are listed in the table below.

Boiling Point (K) Boiling Point (K)
Ho 20.2 36.5
He 4.2 7.6
N 77 .4 139.3
Ne 13.5 48.8
Ar 87.3 157.1

Note: Values at STP

2.3.2.2 Hydrogen Reduction
Hydrogen Reduction is a very simple and efficient method of producing oxy-
gen from Lunar ilmenite and is schematically shown in Figure 2-3. Lunar mare
regolith is electrostatically sized and the larger grains are crushed. The fine
powderized mare is magnetically separated to remove pyroxene and olivine, and
then is electrostatically separated to remove anorthite and isolate ilmenite.

The purity of the ilmenite produced can be improved by repeating the benefi-

ciation process.

The ilmenite is then transferred to a reduction chamber where it is heated
to process temperature in the range of 700 - 1000 C, the melting point of ilme-

nite is 1367 C. Hydrogen gas is then passed through the heated solid ilmenite

inducting the following reduction reaction:
Fe0-Ti02(s) + Hp(g) > Fe(s) + Hp0(g) + Ti0y(s)

If sufficient amounts of hydrogen gas are added, nearly 1007 of all oxygen from

Fe0 can be extracted. Excess hydrogen gas can be found in the water vapor and

18
Astronautics CORPORATION OF AMERICA — TECHNOLOGY CENTER

alien  aesss S,



80 K 60 K 10 K 4 K

COLLECTION
TANK

CONDENSER |-»| CONDENSER

HEATER
(600 °C)

% REGOUTH

o

Lunar Mare Regolith Requirement
242 MT

Products
1325g Hydrogen
690g Helium
0.24¢g Helium-3
2310g Nitrogen
67g Neon
19g Argon

10 MT Oxygen

FIGURE 2-2. SOLAR WIND GAS EXTRACTION
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iN UCTION OF ILMENITE
ROCESS SCHEMATI

ELECTROSTATIC
SIZER w REDUCTION ELECTROLYSIS
PROCESS :
CHAMBER : CELL
y
MAGNETIC ELECTROSTATIC (RS
CRUSHER 1| sEpARATOR [™] SEPARATOR Fe, Ti02 () :
\/ \j P
PYROXENE ANORTHITE H2
AND SEPARATOR |
OLIVINE
KEY @ REFRIGERATOR
D solid Phase
Q Liquid Phase SEPARATOR
O Gaseous Phase
Reactanis (inputs)
il Products (outputs)
Lunar Mare Regolith Requirement Equipment Weight
662.2MT 1.83 MT
Reactant Requirement Reactant Recovery Potential
0.31MT Hydrogen with 95% recovery potential (based on assumptions stated in Appendix B)
95%
Energy Requirement
1. Thermal Aquisition Efficency
7,639 kWhrs [(O2 recovered / O2 available in Mare) x 100]
2. Electrical 3.7%
43,200 kWhrs Products

10 MT Oxygen

FIGURE 2-3. HYDROGEN REDUCTION
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interstitially trapped in the solid residue. Interstitially trapped hydrogen

can be removed by heating the residue to melting temperature.

Water vapor with any excess hydrogen is electrolyzed to reclaim the hydro-
gen and isolate 0. Approximately 95% of all hydrogen can be recovered by
electrolysis and heating the residue, Oxygen gas is condensed and stored as
liquid 0,. The solid residue may be further processed if Fe or TiOp are

desired.

The advantages of this process are:

0 Input requirements are low

o Hydrogen can be recycled without further chemical reactions

o  The required beneficiation process is well understood

o Process has been proven in lab

o Relatively low process temperatures

o There is potential to obtain Lunar hydrogen which would eliminate

need for Earth based consumed imports

o High process efficiency.

The disadvantages are:

o Silicates not removed during beneficiation may cause extensive
corrosion

o The kinetics of the reaction are slow

o Continuous processing has not yet been demonstrated in lab.

2.3.2.3 Magma Electrolysis
Magma Electrolysis is a second method which may be used to process oxvgen
trom Lunar ilmenite and is shown schematically in Figure 2-4. Lunar mare rego-
lith is magnetically separated to remove pyroxene and olivine, then electrosta-
tically separated to isolate ilmenite. As with hydrogen reduction, repeating

beneficiation will improve the purity of the ilmenite.

The ilmenite is then heated to just above its melting temperature, 1367 C.
The liquid ilmenite is then transferred to an electrolysis cell where electrodes
are placed across the melt and a potential difference is applied. The reactions

can be represented by:

FeO'TiOZ(S) + heat > FeO'TiOZ(l)
Fe0-Ti09(1) + electrical energy > Fet2 + 02 + re0-TiOy
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Iron gathers at the cathode where it sinks to the bottom of the melt. Oxygen is

released from the melt at the anode where it is condensed and stored as liquid 0j.

As the iron is removed from the melt, the conductivity drops and electroly-
sis stops. It is estimated that 507 of all oxygen from Fe0 can be extracted
before electrolysis stops., The liquid ilmenite residue should then be removed
and the process repeated. To improve yields using magma electrolysis, FeQ in
the already processed liquid ilmenite may be condensed out and slowly added to

the electrolysis chamber to maintain more constant conductivity in the melt.

The advantages of this process are:

o No Earth reactants are needed if fluxes are not used
o Beneficiation required is well understood
o Hardware requirement is very low.

The disadvantages are:

o Poor process efficiency and yields

o Any silicates not removed during beneficiation will cause extensive
corrosion and electrode replacement will be required unless new

o Mare regolith requirements are very high.

2.3.2.4 Carbochlorination
Carbochlorination is a fairly complicated process that may be used to pro-
duce oxygen and aluminum and is shown in Figure 2-5. Lunar mare regolith 1is
magnetically separated to remove ilmenite, then electrostatically separated to
isolate anorthite. The anorthite is then transferred to the carbochlorination
unit where it is heated to process temperature in the range of 675 - 770 C. 1If
process temperature exceeds 772 C, CaCly melts and alters the thermodynamics of

the carbochlorination reactions. The reactions within the carbochlorination

unit are:

Ca0(s) + C(s) + Clp(g) > CaCly(s) + co(g)
§i05(s) + 2C(s) + 2Cly(g) > SicCly(g) + 2C0(g)

The total reaction can be represented by:

Ca0-A1903+28109(s) + 8C(s) + 8Cla(g) > 2A;Cl3(g) + CaClp(g) + 2SiCl,(g) + 8CO(g)

Aifter the carbochlorination reactions are completed, the gaseous products, metal

chlorides, salts and CG, are passed through a series of condensers. The first
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FIGURE 2-5.
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Reactant Recovery Potential

(based on assumptions stated in Appendix B)
1. 50%
. 75%

Acquisition Efficiency

[(O2 recovered / O2 available in Mare) x 100]
. 10.2% .
11.10.2%

Products ;
I. 10 MT Oxygen
fl. 10 MT Oxygen
8.5 MT Aluminum

CARBOCHLORINATION
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condenser removes enough heat to bring the temperature to 90 C, and AlClj3 is
removed as a liquid. The second condenser is cryogenic and brings the remaining
gas to a temperature of -30 C. This second condenser removes all CO gas and the
remaining liquid salt, SiCly,, is cycled back into the carbochlorination unit.
As the concentration of SiCl, builds up in the carbochlorination unit, it reacts
w/CO and reverses the carbochlorination of $§i0j reaction. This frees up
chlorine atoms from SiCl, and C atoms from CO. The CO gas can then be converted
to C and 0 by the Bosch reactor., It is estimated that approximately 50% of all
chlorine from SiCl,; could be recovered. To reclaim additional chlorine from
SiCl, and the CaClp precipitate, the residue in the carbochlorination unit must

be further processed,

Advantages of this process are:

o Low temperature requirement
e} Process is well understood for terrestrial applications
o The Alcoa process can be used and is the most efficient way to

extract Al,

o Hardware for the Bosch Reactor may be used for many Lunar base
applications,

o There is potential to obtain Al in powderized form for use as

propellant.

Disadvantages are:

o Recycling of C and Cly may require as much or more hardware than
the hardware needed for extraction of desired resources,

o For extraction of 1 kg Al, 10 - 20 kg of Cly are required,

o Many C~Cl1-0 combinations may be thermodynamically favored which -
necessitates monitoring the 0y and Cl) fugacities during the
reactions in the carbochlorination unit,

o Hot chlorine gas is extremely corrosive and creates a maintenance
problem and highly corrosion resistant materials must be used for
the carbochlorination unit,

o This process has little potential to run independent of Earth

support for Lunar base applications.

2.3.2.5 Acid Leach
Acid Leach is a process that can be generally used to process metallic

silicates for metals, silicon, and oxygen. Figure 2-6 shows resource require-
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1. Production O2
Ii. Production of O2 and Al
. Production of O2, Ai and Mg

Lunar Mare Regolith Requirement
. 23.6 MT
Il. 87.3 MT
ill. 60.2 MT

Reactant Requirement

I. 27.5 MT HF with 0% recovery potential

Il. 27.5 MT HF with 45% recovery potential
26.2 MT NaOH with 100% recovery potential

I11. 30.6 MT HF with 53% recovery potential

18.2 MT NaOH with 100% recovery potential

5.42 MT CaO with 90% recovery potential
1.35 MT Si with 90% recovery potential

Energy Requirement

1. Thermal
1. 26,663 kWhrs
1. 129,860 kWhrs
lil. 106,770 kWhrs

2. Electrical
1. 43,200 kWhrs
. 119,813 kWhrs
il. 96,419 kWhrs

Equipment Weight
. 2.85MT
. 11.73 MT
. 15.93 MT

Reactant Recovery Potential

(based on assumptions stated in Appendix B)
. 0%
Il. 70%
. 73%

Acquisition Efficiency

[(O2 recovered / O2 available in Mare) x 100]
1. 100%
1. 28%
. 40%

Products
I. 10 MT Oxygen
Il. 10 MT Oxygen
5.9 MT Aluminum
ill. 10 MT Oxygen
4.7 MT Aluminum
2.35 MT Magnesium

FIGURE 2-6. HF ACID LEACH
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ment sensitivities to the number of desired products. Figure 2-6a is a schema-
tic of the main leach reaction. Figure 2-6b shows steps for reclaiming fluorine
from TiF,, CaFy, and FeSiFg. Figure 2.6¢c shows process steps for recovery of

aluminum and magnesium from the respective metal fluorides.

Lunar mare regolith is leached with HF acid at 110 C. Leach reactions for

processing bulk mare are:

1. Aly03:Si0y + 12 HF > 2(AlF3)-H)SiFg + 5H30

2. Mg0+5i0y + 6 HF > MgFp°SiF4 + 3H30
Fe0:Si0y + 6 HF > FeFy+SiF; + 3H)0

4. Ca0-Si0y + 6 HF > CaFy*SiFy; + 3H)0

5. Ti09°+Si0p + 8 HF > TiF4-SiF4 + 4H0

Reactions 1 and 2 above can represent leach reactions for processing benefi-
ciated mare. The beneficiation required to separate the aluminum and magnesium

silicates from the mare has not yet been determined.

The saturation point for dissolving of the Lunar ore is reached when the
solution molar F:Si ratio reaches 5. During dissolution, precipitation of CaFj
will lower the molar F:Si ratio while evaporation of SiF, will raise the ratio
dissolution rate, acid should be added when the pH rises above 2. Leach reac-

tion monitoring should ensure:

1. Solution Molar F:Si Ratio > 5
2. pH < 2

Processing from Al and Mg Silicates Al and Mg. Aluminum and magnesium

silicates from the beneficiated mare are leached with HF. Leach reactions for
the production of Al and Mg only is represented by Equations 1 and 2 above.
Before each metal can be extracted, the metal fluorides must be separated from
the fluorosilicates. Aluminum is obtained from reduction of AlF3. Magnesium is

obtained from processing MgFj.

Aluminum may be obtained from AlF3 by sodium reduction. Sodium is obtained
from NaOH, which must be initially imported from Earth, but can potentially be
Lunar derived, using Castner Electrolysis. In the Castner Electrolysis Cell,
Natexponent js discharged at the cathode and OH™l is discharged at the anode.

During the electrolysis, excess water must continuously be removed to prevent
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-

unwanted electrolysis of water. Sodium is transferred to a reduction vessel
where it reacts with AlF3 forming Al and NaF. This reduction is carried out in

steel reaction vessel at 900 C. The reaction can be represented by:
A1F4(1) + 3Na(l) > Al(1) + 3NaF(1)
Aluminum is collected in liquid form.

Magnesium cannot be directly extracted from its metal fluoride. MgF,y is
tirst converted to MgQ by steam hydrolysis. MgF, reacts with water at 1200 C

torming Mg0 and HF. The reaction can be represented by:
HFy(s) + Hy0(1) > MgO(s) + 2HF(1)

All required water was produced during the initial leach reactions. The HF

formed is cycled back to the leach tank for further processing of lunar ores.

Mg0 is reduced by Si and Ca0 in an alloy steel reaction vessel at 1100 -

1200 C. The reaction can be represented by:
2Mg0(s) + Si (s) + 2Ca0(s) > 2Mg(1l) + CapSi04(s)

Mg distills into the cooler ends of the reaction vessel and is passed through a
condenser to obtain solid Mg. CapSi04, the precipitate of the reaction, can be

recycled to reclaim Si and CaO.

Processing Unbeneficiated Mare Regolith. After the leach reactions, all
metal fluorides must be separated from the fluorosilicates. AlF3 and MgF, are

processed in the same manner described above.

TiF, and CaFy react with water at elevated temperatures. These reactions

can be represented by:

TiF,(s) + 28,0(1) > TiOy(s) + 4HF(1)
CaFy(s) + Hp0(1) > cCa0 (s) + 2HF(1)

HF is cycled back to the leach tank for further processing of Lunar ores.

Iron is not separated from its fluorosilicate before processing. FeSiFg is

electrolyzed with water. The reaction can be represented by:

FeSiFg(s) + Hp0(1) + electrical energy = Fe(s) + 1/209(g) + 2HF(1) + SiF,(1)
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Required amounts of water can be obtained from the initial leach reactions.
Iron is obtained in solid form., Oxygen is collected as a gas and can be con-
densed to obtain liquid 0;. HF and SiF, exist together in a liquid solution.
HF may be recovered by applying sufficient heat to release HF leach tank for
further processing of Lunar ores. Water, obtained from the initial leach reac-

tions, can be added to the liquid SiF, to reclaim fluorine. This reaction can

be presented by:
SiF4(1) + 2Hp0(1) > Si09(1) + 4HF(1)
The HF recovered here is cycled back to the leach tank.

The advantages of HF leach are:

o 07, Al, Mg, Fe and, potentially, Ti and Ca can all be extracted
o) Process is proven for terrestrial application
o Minimal new technology required for Lunar application.

The disadvantages are:

o Requires extensive hardware for recycling of imported HF

o Electrical and thermal energy inputs are very high

o Desired beneficiation process has not been tested

o High maintenance requirement to maintain desired reactions

in the leach tank,
o HF is highly reactive and may react to form hydrogen which is
explosive under certain conditions. This hazard must be

recognized in transporting and handling HF acid.

2.3.2.6 Vapor-Ion Separation

Vapor phase reduction is a relatively new concept in extractive metallurgy
designed for space applications and represents, in this study, two major but
similar methods of processing: (1) heating the so0il to a vapor state and
separating, and (2) injecting the soil into a plasma with subsequent separation.
In this process, powdered mare regolith (< 100 MICTOM particles) is vaporized
and passed through a separation/collection chamber by a pressure gradient.
Individual metals and oxygen can be separated with minimal to no raw material

imports from Earth. Reducing agents can be used to prevent recombination of

vapor constituents.

Three vapor-ion separation techniques have been suggested and are shown in

Figure 2-7a through c. These are distillation, electrostatic and magnetic
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separation,

Distillation. As the vapor is passed through the separation chamber, spe-

cific materials can be condensed and collected by selectively cooling. Melting

points for some valuable resources in the mare regolith are:

02 -219 ¢ -362 F
Al 660 C 1220 F
Ti 1670 ¢ 3038 F
Fe 1536 ¢ 2797 F
Mg 649 C 1200 F

A separate cooling system is needed to extract each of these resources. To

store oxygen, a cryogenic cooling system is required.

Electrostatic Separation. 1In this separation technique, charged plates are

used to collect individual metals and oxygen. In the separation chamber, metal
ions collect on the negative plate and oxygen is collected on the positive
plate. Individual metals may be collected by altering the current to the
charged plates. The current needed to collect a specific metal ion is based on

the metal ion's mass/charge ratio.

Magnetic Separation. As the vapor enters the separation chamber, it is
This field deflects the path of each vapor

Cooled recovery plates

passed through a magnetic field.
phase constituent according to its mass/charge ratio.

are positioned at distinct distances from the magnetic field to collect indivi-

dual metals and oxygen.
General Discussion. Vapor phase reduction is more promising than che-

mical processing techniques in a Lunar base scenario because of its low con-

sumable requirements. It uses the Moon's vacuum and high concentration of solar

energy. Once all required hardware is transported to the Moon, further import

requirements are negligible. Because Vapor-Ion Separation is an experimental

technique, much additional information is needed before it can be selected for

Lunar base application.

Vapor-Ion Separation faces two serious problems: process hardware

required and the purity of the products obtained.
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The purity of the products obtained can be affected by the recombination of
vapor constituents before the collection process. Partial pressures of each
constituent must be monitored or controlled to ensure a high-purity product,
The problem of recombination is amplified when considering separation by
distillation. Because the vapor is being cooled in stages, recombination occurs
more readily and process efficiency will be less than process efficiencies of

electrostatic or magnetic techniques.

One way to reduce the problem of recombination using electrostatic separa-~
tion is to use plasma to vaporize the mare regolith, By passing the powderized
regolith through a plasma at 8000 K, Al, Mg and Fe are ionized. These indivi-
dual metals are separated and collected while oxygen and all unionized particles

pass through the system., Plasma can be generated in a variety of ways:

Type of Power Req. Working Power Source
Generation (kW) Fluid Efficiency,?
D.C. Arc 150 - 200 Ar, N, Hy 90 - 95
3-Phase A.C. Arc 500 - 1000 Ar, N, Hjp 95
High Freq. Arc 100 - 1000 No particular 30 - 80

restrictions

(From Akashi's "Application of Thermal Plasma to Extraction Metallurgy
and Related Fields")

Once the plasma is generated, it must be maintained using a magnetic field.
An Anamar-type magnet, with a mass of about 400kg, requiring 10 MW, and pro-~-

ducing a field strength of 2 Tesla, could be used.

The advantages of Vapor-Ion Separation Techniques are:

o The need for imports of raw materials from Earth is minimal

o There is no need for recycling

o The system uses the vacuum of the Lunar environment

o Has the potential to obtain more individual metals and oxygen

with higher purity than chemical processing
o All products are extracted in one step which gives this processing

techniques high potential for automation.

The disadvantages are:

37

Astronautics CORPORATION OF AMERICA — TECHNOLOGY CENTER



o Temperatures to vaporize mare regolith are much greater than chemical

processing techniques

o Hardware corrosion can be extensive if new materials are not found
o The process is extremely energy intensive

o Recombination of vaporized ions must be investigated

o More research is needed before extraterrestrial application.

2.3.2.7 Carbothermal Process
The Carbothermal Process has been developed by the Mobile Systems
Department of Aerojet-General's Chemical Products Division for the manufacture
of oxygen from Lunar materials and is schematically shown in Figure 2-8. 1In
addition to oxygen, the Carbothermal Process isolates silicon when processing
magnesium silicate. It is estimated that 10 MT oxygen and 10 MT Silane can be

extracted from 300 MT mare regolith.

The Carbothermal Process involves four steps. The first step is the bene-
ficiation of the mare regolith to isolate magnesium silicate (Mg0-Si0j). To

manufacture 10 MT Oy, approximately 50 MT Mg0-Si0y are required.

The second step involves the reduction of Mg0°Si02 yjth methane at a pro-

cess temperature of 1625C.
Mg0:Si0o(1) + 2CH4(g) > 2C0(g) + Si(l) + Mg0(s) + 4Hp

The magnesium oxide precipitate is removed and can be stored for future
magnesium or oxygen production. Product gases, CO and Hy, are collected and

further processed to obtain oxygen. If 50 MT Mg0-Si02 js processed, 13-15 MT of

silicon may be obtained as liquid Si.

The third step involves processing of product gases from the methane reduc-
tion. Carbon monoxide and hydrogen gases are combined at a process temperature

of 250C.
2C0(g) + 6Hy(g) > 2CH4(g) + 2H20(g)

Methane gas and water vapor are condensed to separate water from methane.
Approximately 70% of the initial methane inputed is recovered here. In this
step, hydrogen is the limiting reagent. The excess CO can be processed in a

number of ways. First, CO can be processed with Hg produced by electrolysis of
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water to recycle CHy and obtain additional 0j5. Second, CO can be processed by
itself to obtain carbon and oxygen. The advantage of the second alternative is
that the hydrogen produced by electrolysis is free to be combined with elemental
silicon to form silane, SiH,. The decision of which way to process excess CO is

made by weighing the value of producing silane to recycling methane.

The final step involves the extraction of oxygen from water produced in the
third step. Water is electrolyzed to produce Hy and 0y gases at a process tem-

perature of 75C.
2H0(1) = 2Hp(g) + 02(2)
From processing 50 MT Mg0-:Si0j, 10 MT 0o and 1.25 MT Hy can be produced.

Silane, SiH,;, is obtained by combination of all hydrogen produced in
electrolysis with silicon produced in the methane reduction step. From 50 MT
Mg0-<Si0p, 10 MT SiH, may be produced and about 5 MT Si will be left over. This

extra silicon may be stored for later use.

One use of the extra silicon is to reduce Mg0 to obtain magnesium, From
the 50 MT Mg0-Si0), over 10 MT Mg are potentially obtainable. 1In addition to
silicon, calcium oxide, Ca0, is also needed to obtain Mg from Mgl. Calcium

oxide can be obtained from Lunar mare (over 10 wt% of mare regolith).

The Carbothermal Process can be potentially used to process other metal
silicates besides Mg0-Si0p. The metal silicates are reduced to metal oxides in
the methane reduction step. Different processing steps must be taken to
separate the metal from its metal oxide. To obtain aluminum, the aluminum oxide
must first be transformed into AlF3 or AlCl3 before further reduction. The
additional processing required to obtain elemental metals necessitates the com-
bination of the carbothermal process with some part of another process if indi-

vidual metals are desired.

The advantages of the Carbothermal Process are:

0 Process has been demonstrated for terrestrial application (by
Aerojet)

o Oxygen, hydrogen and silicon are produced synergistically

o Little technology development needed for Lunar application.

The disadvantages are:
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o Large amounts of Mare (unless multiple silicates can be processed

also) are processed

o High temperature silicate environment creates corrosion problems
o Less than 107 of all 0, available in mare is obtainable

(o] Methane gas or other hydrogen source must be continuously supply
o Must be coupled to a subsystem of another processing scheme if

individual metals are desired.

2.3.3 Separation and Collection

Separation and collection of the products may involve distillation or
centrifuging. For a multi-phase mixture or a liquid mixture of components with
varying densities, various specific constituents can be removed by centrifuge.
For gaseous mixtures, specific constituents may be isolated in a distillation
column or by condensers. Much research is currently being done on thermal mana-
gement systems which will affect technologies involving liquefaction of gaseous
species. Estimates of efficiencies of magnetic cooling versus fluid medium con-

densers show a weight savings of up to 3 times using magnetic cooling.

2.4 Propellant Evaluation

The assessment of Lunar-derived propellant supplies of this task was to
identify, define and evaluate the supply of propellants derived from Lunar
resources and making them available on the Lunar surface as well as in Lunar
orbit. To be advantageous, a Lunar-based propellant supply should be low cost
and highly self-sufficient, requiring minimal Earth-supplied resources. Four
major criteria to be satisfied included: (1) adequate supply and availability of
the Lunar surface raw materials; (2) low-cost processing and production of the
propellant; (3) ease in storage and handling; and (4) effective use and ultimate
performance of the propellant produced in the propulsion systems being con-
sidered. In addition, some general requirements for selection of the Lunar-
derived propellant are: (1) the synergistic potential of the propellant
production with the production of other materials needed to support the entire
Lunar surface base scenario; and (2) the minimal technology risk. Manv of the
ranking provided in this evaluation are subjective. Where possible, quantita-

tive data has been developed to support the ranking.

2.4.1 Supply and Availability
The optimum propellant source is independent of external imports and has

propellant available in large quantities sufficient to supply the Earth-Lunar
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transportation systems, and potentially, Mars and planetary transportation
systems. The actual amount of propellant required depends on the performance of
the propulsion systems that use propellants, the mission requirements/demands,
and the support mass delivered from Earth needed to process the propellaants on
the Moon. Using the Baseline mission model (Section 4.1) and the Baseline
hydrogen/oxygen-based transportation system (Section 3.2), the total amount of
propellant required (for O0TVs and landers) from 1995 to 2015 is about 7000 MT.
For conventional bipropellant propulsion systems, the availability of the oxygen
from Lunar resources is not a problem because of the large oxide content on the
Moon., However, conventional fuel candidates for rocket applications (C, N, H)
are scarce. Generally, for any propellant ingredient, the raw materials
required for propellant production include the processing of Lunar regolith of
some type, and in many cases, a consumable such as a reducing agent. These
materials are dependent on the processing technique and therefore, the eva-
luation of supply and availability of the raw materials for propellant produc-
tion was based on the recommended processing/production techniques. The
following criteria were used to evaluate the supply of raw materials (not
including the actual propellant processing). Asterisks denote criteria used for

initial screening of propellants.

o Raw Material Availability*

o Consumable Raw Material Transportation
o Raw Material Acquisition

o Resources to Supply Raw Materials

The overall ranking for supply and availability candidates is shown in Table
2-11. The Solar Wind Gas Extraction, Hydrogen Reduction Techniques, and oxygen
production, respectively, rank the best on raw material supply and availability.

The rating system is discussed below for each of the subcriteria.

2.4.1.1 Raw Material Availability
These criteria allow assessment of the compatibility of propellant/pro-
cessing techniques to Lunar resource availability. For many propellant can-
didates, only some of the raw materials are available on the Moon. Propellant
candidates have been evaluated based on the availability of the raw materials on
the Lunar surface without regard to the difficulty of acquiring, transporting,
and/or processing of those raw materials. The ranking guidelines are as

follows:
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o 5 - 100% of all raw materials are available on the Lunar surface
o 4 - approximately 80% (by wgt) available on the Lunar surface

o 3 - approximately 50% (by wgt) available on the Lunar surface

o 2 - only 20% (by wgt) available on the Lunar surface

o) 1 - raw materials only available on Earth

These criteria are considered very important and were used to evaluate pro-

pellant candidates in the early part of the study.

Table 2-5 shows the raw material availability for the various propellants
and associated propellant techniques. Hydrogen Reduction, Ilmenite Electrolysis
and Solar Wind Gas Extraction rank the highest while Acid Leach, Carbothermal,

and Carbochlorination rank the worst.

2.4.1.2 Consumable Raw Material Transportation
The transportation of the raw materials will factor into the evaluation the
actual location of the consumable raw materials source and the amount of con-
sumable required. The baseline assumption is that the processing location is on
the Lunar surface mare of highlands unless otherwise mentioned. Evaluation
guidelines are provided below and are used for all of the consumable raw

materials required in a specific propellant production process,

o 5 - No consumables or imports

o 4 - Consumables with source on Lunar surface

o 3 - Small mass transportation required from Earth orbit/surface

o 2 - Moderate mass transportation required from Earth orbit
surface

o 1 - large mass transportation required from Earth orbit/surface

The data of concern in this evaluation are the process additive requirements
shown in Table 2-5. Of these additives, only hydrogen can be obtained imn suf-
ficient quantity for the Hydrogen Reduction technique to be considered available
on the Lunar surface. Approximately 31 g are required for 10 MT of oxygen of
which 295 g may be recovered {(calculation from 95% efficiency given by Knudsen,
1986). About 662 MT of mare regolith must be preprocessed to obtain enough
ilmenite for 10 MT oxygen. Based on a hydrogen concentration of 54.8 ppm (by
mass) in the mare soil, 36.2 g of hyvdrogen, more than twice of that needed,

could be claimed from the mare which must be mined if 100% capture is assumed.
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Thus, enough hydrogen may be obtained from the Lunar soil to replenish the 15 g

lost during processing.

Other process additives must be supplied from sources external to the Lunar
environment, assumed here to be Earth. The ranking of the consumable transpor-
tation is shown in the second row of Table 2-5. Ilmenite Electrolysis and Solar

Wind Gas Extraction ranks the best.

2.4.1.3 Lunar Raw Material Acquisition

Another important criteria of Lunar-based propellants is the ease at which
the Lunar raw materials or the propellants themselves can be separated,
collected and handled. No propellant or propellant raw material is available on
the Lunar surface without some degree of collection and preparation. The most
favorable to be expected would be one that requires selective collection without
processing. The solar wind gases that have been entrained in the regolith
matrix represent the easiest attainable and the most usable propellant can-
didates since they require only soil collection, heating, and gas collection
separation systems; however, the available qdantities of these gases is small
and much regolith must be processed. The least favorable would include raw
materials that are very difficult to locate, collect, separate and process spe-
cific samples to obtain the raw materials necessary for the propellant produc-
tion process. An example of this is the magnesium silicate used in the

carbothermal process.

Propellant candidates were evaluated using recommended processing tech-
niques based on the amount of regolith to be mined/collected and the amount of
preprocessing required to obtain the raw materials to produce an equivalent

amount 6f propellant. Specific ranking guidelines

o 5 - Only Lunar regolith required as raw material without pre-
ference to regolith/Lunar rock characteristics; no pre-

processing

o} 4 - Simple separation of small to moderate amounts (< 100 MT) of
regolith
0 3 - Simple separation of large amounts (> 5000 MT) of regolith
o 2 - Complex separation of small to moderate amounts of regolith
) 1 - Complex separation of large amounts (> 5000 MT) of Lunar
regolith
45
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Simple separation is characterized as a one or two step of preprocessing
{(e.g. Ilmenite separation), Complex separation may be characterized by isola-
tion of a single metal silicate (e.g. Al03°Si0p, Mg0-Si0y). The rankings of
each propellant/process are given in the third row of Table 2-5. The Vapor Ion

separation and Solar Wind Gas Extraction techniques ranked the highest,

2.4.1.4 Resources to Supply Raw Materials
The amount of equipment and power/thermal requirements required to obtain
the raw materials is another consideration for Lunar-based propellant produc-~
tion, The equipment mass was estimated based on the amount of mare regolith
which must be collected. The power/thermal requirement will be considered of
lesser importance than the equipment mass. Specific evaluation guidelines are

as follows:

o 5 - Low equipment mass requirements (< 5 MT), low power/thermal
requirements (< 100 MW-hrs)
o 4 - Low equipment mass (< 5 MT) and moderate power/thermal needs

(> 100 MW-hrs)

o 3 - Moderate equipment mass (10-20 MT), moderate power/thermal need
(100-500 MW-hrs)
o 2 - Modest equipment mass (10 to 20 MT), high power/thermal needs

(> 500 MW-hrs)
o 1 - High equipment mass (> 20 MT)

The evaluation of each propellant/process candidate is shown in the fourth row
of Table 2-5. The Vapor lon separation process ranks highest because of the
ability to process any type of soil constituent and thus requires the least mare

regolith and little/no separation and preprocessing.

2.4.2 Production and Processing

The attractiveness of propellant candidates is heavily dependent on the
cost of Lunar processing relative to delivery from Earth. The Lunar surface
provides a good base of operation; however, one kg delivered to the Moon
requires to 3.5 to 7 kg of mass from Earth depending on the propellant/trans-
portation system and the processing techniques Earth orbit assuming the
transportation cost, Thus, the production of propellants must ultimately be
self-sufficient on those resources that can be Lunar-derived. Some resources

will be Lunar-derived such as chemical constituents of the soil, while other
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resources must first be "implanted", these will be considered Lunar-derived.
Power and manpower are examples of the latter. The evaluation characteristics
for propellant production and processing are listed below. Each of the criteria
will have a ranking from 1 to 5, one being least favorable. The asterisks
denote criteria used for preliminary screening of candidate propellant pro-

cesses.

o Operational resource requirements¥
) Initial set-up requirements*

o Technology risk

o Experience with technique (or similar technique)
o Process automation and control

o Output quality/purity for typical yields

o] Value of bi-products

o Safety

2.4.2.1 Operational Resource Requirements

The demand and consumption rate of supplies is the driving factor of any
Lunar-based activity and is a key determinant in the efficiency of the produc-
tion technique. The operational resources considered include any consumable
that must be periodically replenished. These resources include fluids and che-
mical additives, utilities such as power and thermal energy, equipment, facili-
ties, tools, spares and manpower. Direct processing requirements of
fluids/additives, utilities, and equipment were considered the most crucial and
were given the most emphasis. Evaluations of these elements on a per mass pro-

duct are shown in Tables 2-6a through c.

A key factor and determination whether a process will even theoretically be
economical on the Moon is the ratio of consumables replenishment to product
yield. If this ratio is greater than one, the process is not at all economical
as it would be easier to simply deliver the products to the Moon. If this ratio
is less than one, utility and equipment masses may be sufficiently large as to
make delivery of the products cheaper. For these cases the break-even point is
dependent on the initial equipment (including that for power and propellant) and
the resupply requirements, and will be determined by the amount of propellant to
be processed. Such a curve is presented for the recommended propellant sce-

narios in Section 2.6.
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The ratings of propellants/propellant candidates under this criteria are
based on the consumable and power/thermal ratios presented in Tables 2-6a and c.

Guidelines for the ratings are as follows:

o 5 - little or no consumables

o 4 - consumable to product mass ratio less than 0.3

o} 3 - consumable to product mass ratio 0.3-0.6

o 2 - consumable to product mass ratio 0.6-1

o 1 - consumable to total product mass ratio greater than unity

Half points were given based on the power/thermal requirements.

Table 2-7 shows the ratings for operational resource requirements in the
‘first row. Hydrogen Reduction rates high as only 5% of all hydrogen used can
not be reclaimed through the electrolysis and the residual Fe-Ti0O, fines. Vapor
Ion separation uses no consumable except for the plasma working fluid but
requires a significant power and thus, rates a 4.5 as does the Solar Wind Gas
Extraction. For the HF Leach process to be valuable at all on the Lunar sur-
face, at least Al and possibly Mg must be processed to recover enough fluoride
(from the metallic fluorides AljFg and MgFeFg). If the fluorides are not reco-
vered, a significant amount of HF consumable is required to make the process
viable. The carbochlorination process, as presented here, is not a logical
solution to processing Oy and/or Al because the consumable to product ratio is

greater than unity.

2.4.,2.2 1Initial Set-Up Requirements

The 1initial set-up requirements for a particular propellant production
technique is related to the equipment mass and initial resources required to
start the processing; however, the cost of this '"front-end" deliverv may be
amortized over many years. The rating of this subcriterion will be determined
by the equipment mass, the initial amount of consumables, and the power/thermal
requirements as summarized in Table 2-6b. For this evaluation, the thermal
power was considered supplied by electrical heaters at 75% efficiency. This is
a conservative assumption as a significant amount of waste heat and solar-
generated heat could be provided. The power system masses were calculated based
on fission nuclear power system technology having an overall specific mass of 30
W/kg was used. Radiator heat rejection is also required with heat rejection

requirements equal to power requirements. The specific mass of the thermal
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rejection system was assumed as 0.05 g/W. A 50% duty cycle was considered for
all power/thermal system estimates. The ratings for each propellant/process is

given in the second line of Table 2-7.

2.4.2.3 Technology Risk

Useful technologies may either be enabling or enhancing., Processes with
enabling technology needs will require extensive development programs before
they become a ﬁ?asible option and thus has a significant technology risk asso-
ciated with it, Enhancing technologies would create a measurable difference in
the performance of brocesses and therefore, have less technology risk associated
with them. The processing technologies are addressed in Section 4.1. A process
rating of '"1'" has many enabling technology development requirements; a '"3" has
no enablingﬂtechnology requirements but would require extensive development of
enhancing technologies before it could become a reasonably-efficient process; a
"5" requires no technology development or the technology development would not
appreciably benefit the process efficiency or other attributes. Ratings of 2

and 4 were also be given relative to 1, 3, and 5.

Table 2-7 shows the ratings for this subcriterion. The Hydrogen Reduction
Process has been demonstrated on Earth. Work to date should be geared toward
enhancing the hydrogen-ilmenite solid/gas mixing and the hydrogen gas recovery

from the Fe-Ti0j fines.

The Acid Leach process is rated 4.0 as it requires no enabling technologies
and has been shown to work with platinum electrodes; however, new methods of

recovering the HF need to be explored.

Carbothermal and Solar Wind Gas Extraction and Ilmenite Electrolysis are
rated 3.0. The carbothermal process is fairly well developed for Earth but
requires some technology development to expand its application to multi-species
regolith and to reclaim the CH; consumable. The Solar Wind Gas Extraction pro-
cess, while a fairly new development appears to have no enabling technologies
and thus relatively low technology risk., Hydrogen extraction may be very simi-
lar to the H recovery from Fe-Ti0y fines in Hydrogen Reduction. The major
technology driver in the Ilmenite Electrolysis Process is reducing the degrada-
tion of electrical materials and increasing their durability against silicate

material.

The Vapor Ion Separation and Carbochlorination processes are rated 1.0

because they show high risk, The Vapor Ion Separation process is still in the
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theoretical stage. The carbochlorination process requires substantial develop-

ment in recycling the consumable carbon and chlorine before it is feasible for

Lunar base applications,

2.4.2.4 Process Experience

This criterion will take into account the applicable experience with the

processes on Earth or other space-related research and development. Although‘

all applicable processes will be suitably demonstrated on Earth before use on
the Moon, considerable expense and development risk may be saved if there exists
prior experience. A rating of '"5" has been given to those processes that are
currently being used for commercial production on Earth; a "3" represents
experience in a laboratory or small-scale production environment; a "1" repre-

sents no experience. Ratings are shown in Table 2-7.

The Acid Leach processes are used in aluminum and magnesium refining and
have evolved over many years of commercial operation and thus ranks 5.0. The
carbochlorination procesé has been used in special Earth-based processing appli-
cations, but requires motre research before extraterrestrial application is made
feasible. The carbothermal process has been demonstrated in the laboratory for
processing of magnesium silicate. This process' ability to process other metal
silicates has not been demonstrated in the lab and should be examined further to

determine its potential for Lunar base application,

The Hydrogen Reduction and Ilmenite Electrolysis have not been specifically
used for commercial application on Earth, but are in test stages with small
scale plants demonstrated. No experience exists with the Solar Wind Gas
Extraction as a system. However, experience with the components (including
éolid/gas mixing, electrolysis, solid/gas separation) does exist and is rated
2.0. No experience to date exists with Vapor Ion Separation although plasma

separacion and plasma processing is becoming a growing research area.

2.4.2.5 Process Automation and Control
The degree to which a process can be automated and controlled will be an
important factor in the self-sustenance capability of any propellant production
system established on the Lunar surface. The level of automation is largely
dependent on the complexity of the process, but also on the tolerance of the
process to environmental changes (e.g. temperature) and the stability of the

process. This criteria is objectively determined based on the subsystem and
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component functions of the particular processes. A rating of '"5" represents a
continuous process that is stable, highly reliable tolerant of a varying
environment, and relatively easy to automate; a ranking of "3" designates a
system that would be potentially difficult to automate, hard to control because
of high complexity or high tolerance levels, and would most probably experience
a great deal of down-time; a '"1" represents a process nearly impossible to

control and/or automate.

The ratings for the subcriterion are also given in Table 2~7. No process
was considered impossible to automate, The Hydrogen Reduction, Ilmenite
Electrolysis, and Solar Wind Gas Extraction processes are relatively simple
processes with few interactive components and subprocesses and are rated a 5.0,
Maintaining temperature and pressure are the main consideration in addition to
voltage for the Ilmenite Electrolysis., The Vapor Ion Separator process is a
relatively confined process having few interacting components, However,
plasma/vapor maintenance as well as plasma injection can be difficult to control
and, i1n fact, must be automated to sustain plasma tolerances. Thus, Vapor Ion

Separation is rated a 4.0.

The Acid Leach, Carbothermal, and Carbochlorination processes are rated 3.0
because of the many subprocessing branches and extensive recycling requirements

to sustain processing over a long period of time.

2.4.2,6 Output Quality/Purity

The quality and purity of the product is important in the determination of
additional requirements for product refinement or whether additional factors
such as accommodation of impurity in the propulsion system should be considered.
Factors influenced by an impure output may be reduced efficiency, reliability,
maintainability, and life of the associated propulsion system. A rating of "5"
means that the output is near 100% pure; a "4'" means that impurities may be
measurable, but not detrimental, a "3" represents output purities with potential
harmful effects, a '"2" means that harmful impurities exist, but can be filtered
out with additional systems; a "l1" means that degradant impurities will exist

and are nearly impossible to avoid.

Table 2-7 provides a summary of the ratings for this subcriterion.
Producing oxygen from water electrolysis is considered to yield very pure oxy-

gen. Hydrogen Reduction is rated 5.0. Acid Leach and Carbothermal process also
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produces oxygen from water electrolysis, but have potential for impurity in the
other products (aluminum and silane) and are thus rated 4.0. Ilmenite
Electrolysis is also rated 4.0 because the oxygen is bubbled from the molten
ilmenite and the impurities could arise from other gases trapped in the ilmenite
matrix. Vapor Ion Separation and Solar Wind Gas Extraction may have impurities
due to the lack of accuracy in ion and gaseous separation and are rated 3.0.
Carbochlorination is also rated a 3.0 because of the aluminum separation from

the chlorine.

2.4.2,7 Value of Bi-Products

All processes have some type of bi-product and some processes may accom-
modate more than one product through a specific process branch. We call this
synergistic processing. A discussion of synergistic processing follows in
Section 2.5. Potentially useful Lunar base materials were listed in Table 2-2.
A ranking of '"5" means that bi-products will be adequately available for a
designated use; a "4" means that many generally useful bi-products exist; a "3"
represents bi-products that are not extremely useful or are available in
moderate quantities only; a "2'" designates bi-products that are difficult to use
without a great deal of additional processing; and a "1'" means that no or un-

useable bi-products are available,

The Vapor lon Separation is by far the most synergistic process considered.
Theoretically, any type of Lunar regolith can be crushed and vaporized for ele-
mental separation of its constituents, Many useful materials could be for-

mulated for use in the Lunar base scenario.

Acid Leach and Carbochlorination are rated 4.0 because thev accommodate
multiple process branches that yield various metals/gases such as aluminum,
magnesium, silicon and oxygen. The carbothermal process has produced magnesium,
silicon and oxygen in the laboratory. If processing of additional metal silica-
tes is found possible, this process scenario can potentially vyield aluminum,
magnesium, iron, calcium, silicon and oxygen. Ilmenite Electrolysis yields a
bi-product of molten Fe-Ti03/Fe0-Ti02 yhich may be formed for various applica-

tions and is also rated 4.0.

Solar Wind Gas Extraction, rated 3.0, will yield volatile gases such as
hydrogen, oxygen helium, neon, argon, and possibly water vapor which may be used

as working fluids, as input to life support, or as input to various processing
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or scientific applications. However, the amount of these volatiles is extremely

limited.

The Hydrogen Reduction process, rated 2.0, yields powdered Fe:Ti0, which

would require extensive processing to be useful.

2.4.2.8 Safety

The safety criterion is a measure of potential hazard to man and the Lunar
base systems during the processing phase. These hazards include explosions,
degradation of equipment operation, risk of contamination, and risk of life.
More potential of hazard will induce burdens on system design safety factors,
operational constraints and reduce the relative integration potential of the
process to the Lunar base infrastructure. A rating of '"5" is given for pro-
cesses with few safety concerns; a "3" means moderate hazards exist, but can be
mitigated; a "l1'" means that a process is believed to be a hazard, is extremelv

dangerous and may not be mitigated without very costly measures.

Ilmenite Electrolysis is considered a 5.0 with regard to safety because
process rates are fairly slow and the melt-through hazard is not considered a
significant or likely event., Hydrogen Reduction is fairly safe, and was rated
4.0. The potential for gaseous explosions exists for the Vapor Ion Separation,
Solar Wind Gas Extraction and Carbothermal processes. Acid Leach and
Carbochlorination are rated 3.0 because of the caustic materials and explosive

gases present in the systems.

2.4.3 Storage and Handling

Propellant candidates exhibiting ease of storage and handling will simplify
equipment and facility needs for both the propellant depot and the transpor-
tation tankage. Operationally, however, a Lunar or space storable propellant
may not present the safest propellants to handle. Of course, technology plavs a
very 1important role in the long-term storage capability and the resources
required to store. To address these characteristics, we have used three major

subcriteria in which to evaluate the storage and handling aspects of propellant

candidates:
o] Complexity and requirements of containment
o Long-term storage capability
o Safety.
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Table 2-8 summarizes the rating among these subcriteria. Much of the evaluation

is propellant dependent rather than process dependent,

2.4.3.1 Complexity and Requirements of Containment
The complexity and size of the storage vessel depends primarily on the tem-
perature and pressure at which the propellant must be stored. Cryogenic tanks
are much more complex than storables; solids are easier to store than storables.
Below, we rank the relative difficulty of storage and the amount of equipment
and facilities required to store and subsequently acquire from storage a speci-

fic propellant. Guidelines for this evaluation are as follows:

o 5 - Simple stock piling as a bulk material in large storage containers

o 4 - Lunar surface-storable or space-storable in sample containers

o 3 - Storage requires modest environmental control of the storage
container

o 2 - Significant environmental control and support required to store

(e.g. cryogens)

Extremely complicated storage techniques required.

o}
s
1

The ratings presented in Table 2-8 are relatively straightforward for individual
propellants. The variance in ratings is due to the process-end temperature

which may require additional cooling.

2.4.3.2 Long-Term Storage Capability
The lifetime of a propellant in its storage container is dependent on the
technology used to store it. A ranking of "5" represents no leakage/boiloff; a
"1"

"3" depicts some boiloff, but no shortening of storage time below 1 year; a

represents significant boiloff.

Silane was rated a stable, storable propellant. Aluminum and magnesium may
be scored as powders with low-humidity vessels (easy on the Moon) and thus rated
a 5.0. Cryogenics (He, Hy, 0p) were rated the worst at 3.0 because of boiloff
considerations. However, technologies such as magnetic reliquefaction can eli-

minate boiloff by recirculating and recooling vented gases.

2.4.3.3 Safety
The safety criterion is a measure of potential hazard to man and the Lunar

base systems due to storage and handling of the propellant candidate. These

hazards include explosions, degradation of equipment operation, risk of con-
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tamination, and risk of life. Significant hazards will induce burdens on system
design safety factors, operational constraints and reduce the relative integra-
tion potential of the Lunar base systems and the manned environment. A ranking
of "5'" means a minimum hazard present; a "3" means moderate hazard, but can be
mitigated; a '"1'" means that propellant storage is extremely hazardous and may

not be mitigated without very costly measures.

Aluminum and magnesium were rated 5.0 because they pose little or no hazard
when handled or stored in oxygen-free environment. Silane, oxygen and helium
were considered slightly hazardous and rated 4.0. Hydrogen was considered the

most hazardous and rated a 3.0.

2.4.4 Propellant Use and Performance

The actual use and performance of the propellant in the space transpor-
tation operational scenario is a key criterion. Much of this depends on the
propulsion system used for the propellant; however, a theoretical maximum has
been calculated for the propellant candidates and will be used to rank them (see
Propellant Manual). Also an important criterion for a Lunar-based propellant
system is the mixture ratio (oxidizer to fuel ratio). Also, the exhaust toxi-
city and hazard, ease of loading and controlling the propellant within the pro-
pulsion system, and any operational constraints that may be imposed by the use
of a particular propellant candidate were evaluated. These evaluations are
relative to the propulsion system recommended for the appropriate propellant.

The list of criteria includes Isp exhaust hazard toxicity, and ease of control.

2.4.4,1 Specific Impulse
The measure of the performance potential of a propellant may be given by
the specific impulse (Isp). The Isp is a measure of the relative quantity of
the total propellant that will be needed to perform for a given mission. For

chemical systems, the guideline for rank are as follows:

o 5 - over 500 sec

o 4 - 450 - 490 sec

o 3 - 300 - 450 sec

o] 2 - 150 - 300 sec

o 1 - less than 150 sec.

These ratings, which are extremely propellantédependent and not process-

dependent, are shown in Table 2-9.
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Oxygen and hydrogen systems were rated 4.0 because of relatively high
Isp. Silane was rated 3,0 because of its 360 second Isp. Aluminum was rated
3.0 as it could provide fairly high Isp when mixed with hydrogen (400 sec).
Magnesium rated lower than aluminum because of reduced Isp. For information

purposes, helium was rated a 5.0 because of the extremely high Isp ( 106),

2.4.4.2 Exhaust Hazards

The danger to crew and Lunar facilities is of primary importance. The
hazard of the exhaust gases from the propulsion systems is an important con-
sideration. Plume impingement, particulate debris, regolith disturbance,
exhaust effects, and general environmental impact are concerns which were eva-
luated under this criterion. A ranking of '"5" represents low risk exhaust pro-
ducts such as water from the H/O system; a "3'" designates only a slight hazard
with effluents of low toxicity or reactivity; a "1" represents exhaust products
that are not necessarily desirable to the Lunar surface base environment. Use

of fluorine as the oxidizer would be an example of a "1",

Hydrogen and oxygen rated 5. Silane, Aluminum and magnesium rated &

because of the exhaust particulates.

2.4.4.3 Ease of Control

The characteristic of a propellant to be circulated in a propulsion device
was evaluated here. If a propellant can be controlled easily during the opera-
tion of a propulsion system, a ranking of five has been given; propellants that
require extensive component hardware to control their combustion rank a "3";
propellants that are nearly impossible to control rank a "1". Hydrogen and oxy-
gen rated 5 as their control is state-of-the-art. Silane ranked 4 because of
possible problems of pumping (residual silicon sediment) the silicon-hydrogen
mix., Likewise because of tripropellant injection or pumping of a hybrid slurry,

aluminum and magnesium rated a 3,0.

2.4.5 System-Level Characteristics
Some propellants may appear more synergistic, and require less development

risk, These are the major criteria used to evaluate the overall benefits of a

particular propellant.

2.4.5.1 Integration to Lunar Surface Base
A propellant or by product may function in many ways within the LSB sce-

nario., These propellants will rank high "5". Potential secondary use include:
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power, production, storage, and support of LSB and/or orbiting facilities.
Propellants that have potential application in multiple systems, or that have
only marginal value in their secondary application are rated "3". Those pro-
pellants without potential application within the LSB infrastructure are ranked

"1"., The ratings are shown in Table 2-10.

The Vapor-Ion Separation technique was rated a 5 because of its potential
percentages to processing of most elemental constituents of the Lunar regolith.
Acid Leach and Solar Wind Extraction were rated 4.0 because of the value of
their synergistic processing, acid leach producing aluminum, magnesium and any
other metal from metal silicates, solar wind extraction producing hydrogen,
helium, carbon, nitrogen, argon and neon. The Carbothermal and Carbochlorina-
tion processes were rated 3 because of their potential for producing aluminum in
addition to oxygen. Magnesium is also produced, however these processes are
severely limited in their recovery of consumables when additional metal silica-
tes are added. 1Ilmenite Electrolysis and Hydrogen Reduction were both rated low
because of their lack of synergistic potential. Ilmenite Electrolysis rated
slightly above hydrogen reduction because of the potential of using the liquid

iron and titanium oxide byproducts.

2.4.5.2 Technology Risk

Major technology risks exist in acquisition of resources, processing of
propellants, storage and handling, and the use of the propellant. In addition,
technologies that are enabling carry a much greater risk than those that are
enhancing. Requirements for developing enabling technology in the four cate-
gories listed above will require extensive research subtended by high risks.
These propellants rank "1". Those propellants that have many technology
requirements but the technologies are enhancing rather than enabling rank '"2".
Propellants with modest technology requirements (enabling and enhancing) are
ranked "3". Propellants with only enhancing technology development requirements
rank "4'" while those with minimal technology development requirements rank "5'",

The ratings are shown in Table 2-10.

Table 2-11 shows the overall ranking of propellant/processing candidates
on these major criteria. Each of these will be described in the following sec-
tions, including evaluations of each propellant/processing techniques by subcri-
teria. Hydrogen reduction is rated a 5 because it has been experimented and

demonstrated in the context of a Lunar processing technique. Acid Leach,
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OVERALL SYSTEM CHARACTERISTICS
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Carbothermal, and Carbochlorination techniques are rated 4 as the technology for
Earth base requirements is state-~of-the-art; however, the Lunar based applica-
tions have not been investigated. Ilmenite Electrolysis is rated a 3 and it is
not readily used in the commercial sector but has been preliminarily tested on a
very small scale. Vapor Ion Separation and Solar Wind Gas Extraction rate a 2.
The system components and subsystems have been demonstrated and tested, however

the technologies have not been addressed at a systems level for Lunar base

applications.

2,5 Potential for Synergistic Processing

A synergistic approach to analyzing propellant processing schemes would
involve producing a broad range of products using minimal amounts of resources
ﬁeeded from Earth., The first step would involve defining the needs of a Lunar
base and assigning a degree of importance to each potential Lunar resource
(applications of potential Lunar resources are shown in Table 2-2 of Section
2.1). In the infant stage of the Lunar base, propellants will have the greatest
importance. If propellants were needed only for transportation to the Moon,
additional equipment needed to support the Lunar base may be brought up as
payload. This would reduce the time needed for Lunar base development. The
initial material processing scheme may only have to address the need for
extracting propellant resources, but must be adaptable to meet future needs of a

Lunar base scenario.

The potential for synergistic processing of each propellant processing

scheme was determined using three criteria:

1. The number of potential Lunar resources that may be extracted,
2. The value of each obtainable potential Lunar resource, and
3. The additional resource, equipment and energy requirements

needed to obtain additional Lunar resources.

Hydrogen reduction of ilmenite and magma electrolysis ranked lowest in
potential for synergistic processing. Both of these process schemes require
beneficiation of the mare regolith to obtain ilmenite, Fe0°Ti0p. Ilmenite con-
tains only three potential Lunar resources: iron, titanium and oxygen. Due to
the difficulty in separating titanium from its oxide, hydrogen reduction and
magma electrolysis are limited to production of iron and oxygen. The availabi-

lity of oxygen using either of these process schemes is limited to the oxygen
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from Fe0 only. Capabilities of hydrogen reduction allow for potential extrac-
tion of all oxygen from Fe0 but additional separation hardware is required for
extraction of iron. Capabilities of magma electrolysis allow for potential

extraction of only 507% of all oxygen and iron from Fe0 in ilmenite.

The Carbothermal process has fair synergistic potential. Terrestrial
application of the Carbothermal process has successfully extracted oxygen and
silicon from Mg0-Si0) (Aerojet). With additional hardware, Mg0, produced during
the methane reduction step, may be processed to obtain additional oxygen and
magnesium. Further experimentation wusing the Carbothermal process will
demonstrate the process potential to manufacture oxygen silicon and various

metals using other metal silicates from the mare regolith.

Carbochlorination and Acid Leach both have good synergistic potential. The
Carbochlorination requires beneficiation of the mare regolith to anorthite,
Ca0-Al1903°25i09. All oxygen in anorthite can be recovered. Carbochlorination
process requirements for oxygen and aluminum are only slightly greater than
requirements for oxygen alone. No additional mare or reactants are required to
extract aluminum in addition to oxygen and the reactant recovery potential
increases by 50%. Thermal power requirements increase only slightly, but
electrical requirements almost double. TLess than a 10% increase in equipment
weight is required for oxygen and aluminum production. In addition to oxygen
and aluminum, the Carbochlorination process has potential to extract calcium and

silicon from the beneficiated Lunar mare regolith.

In the Acid Leach process, all oxygen is extracted by electrolysis of water
produced 1n the leach reactions. If unbeneficiated mare regolith is leached,
all leach reaction products besides water are ignored and no acid is recycled,
process requirements are considerably less than for the carbochlorination pro-
cess scheme for oxygen production only. For aluminum and oxygen production,
using the Acid Leach process, mare regolith is beneficiated to Al703°Si0y to
reduce reactant consumption. This causes an increase in the mare regolith
requirement by more than a factor of 3, as well as large increases in many other
process requirements. The reactant requirement doubles, but reactant recovery
potential is 707%. Thermal power requirements increase more than 4 times, and
electrical power requirements nearly triple. A large increase is seen by the
hardware requirement. Equipment weight increases by a factor greater than 4,

Analysis of Acid Leach for production of aluminum, oxygen and magnesium exempli-
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fies this process schemes potential for synergism. Mare regolith and power
requirements both drop when processing Al, 0y and Mg compared to just Al and 0j.
Although the reactant requirement increases, the reactant recovery potential
increases. The rise in required hardware weight is much smaller than the rise
trom production of 0; only to 0 and Al. These trends suggest that the Acid
Leach process works most efficiently when used to obtain several products. If
unbeneficiated mare is processed using the Acid leach process, and all addi-
tional process requirements are met, oxygen, aluminum, silicon, magﬁesium, iron,

calcium and titanium may potentially be produced.

The Vapor lon Separation process has the greatest potential for synergism.
The proposed collection methods for this conceptual process can be fine tuned to
extract specific elements from the vapor stream. It is possible that aluminum,
iron, titanium, magnesium and oxygen can be extracted from unbeneficiated mare
regolith in one automated process step. This process scheme requires no reac-
tants and minimal additional hardware to obtain many useful lunar resources.
This process level of automation, level of self-sufficiency and potential for
synergism make it ideal for Lunar base application. This process is unproven in
the lab and much research and development is needed before an accurate quan-

titative analysis can be made.
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3.0 PROPULSION/VEHICLE SYSTEMS

There are many propulsion and vehicle systems and technology alternatives
that can be applied to the Earth~Moon transportation infrastructure. The objec-
tive of Task 2, Design/Analyze Propulsion/Vehicle Systems, was to identify and
select propulsion and vehicle systems capable of supporting the Lunar mission
model. Vehicle families have been developed from propellant/vehicle alter-
natives based on mission model requirements. A vehicle family is a group of
systems (e.g., an OTV and a lander) that are specifically designed for a given
mission requirement. Figure 3-1 shows the scope of propulsion alternatives
applicable to the Earth/Moon transportation scenario. The gray boxes indicate
emphasis of scope within this study. Propulsion alternatives were chosen based
on propellant availability identified in Task 1 and the hydrogen/oxygen, pump-—
fed rocket engine was considered the baseline propulsion system. The baseline
vehicle system follows Orbital Transfer Vehicle (OTV) configurations currently
being studied at NASA/MSFC. Vehicle options included aerobrakes, propellant

tankage, support system mass and landing gear mass.

Characteristics of the baseline propulsion/vehicle designs were varied to
address sensitivities and tradeoffs. Figure 3-2 presents the parameters for
which sensitivities were examined. The parameters and their corresponding
values at the ends of each line represent the data range explored for each tra-
deofi. In examining these tradeoffs, it must be remembered that the individual
parameters are rarely independent, In many cases, changing one parameter
changes another. For example, a change in the mixture ratio results in a change

of the specific impulse, thrust, and other engine parameters.

To develop engine and stage parameters, mixture ratios and combustion
environments were analyzed in the "ELES'" computer code., ELES is a design tool
to assist in preliminary systems analyses of liquid rocket engines/vehicles.
The section of the code used here estimated size, weight and engine performance
based on the standard Joint Army Navy NASA Air Force (JANNAF) thermochemical
analysis methods. A description of the ELES code is provided in Appendix C.
Qutputs from the ELES code were obtained for 18 propulsion system design cases.

These cases are presented in Sections 3.1 and 3.2

Weight and performance estimates from ELES were used by the computer cede

ASTROSIZE to size the aerobrake, propellant tankage and landing gear vehicle
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systems to meet mission requirements. The ASTROSIZE analysis includes con-
sideration of specific propellant supply nodes, basing nodes, and vehicle design
alternatives such as tank design parameters, aerobrake characteristics, landing
gear parameters, number of engines, and payload capacity. A total vehicle mass
and propellant capacity is output for a specific reference design mission.
ASTROSIZE outputs then were fed to ASTROFEST which manifests mission payload
requirements aand propellant supply burdens to obtain total transportation
requirements: the number of flights between each node and the propellant supply
requirements at each supply node. From the outputs of ASTROFEST, total Earth
Launch Mass (ELM) is calculated, The ELM is the total mass that must be
launched from the surface of the Earth over the duration of the mission model.
Brief descriptions of ASTROSIZE and ASTROFEST are provided in Appendix E. The
ELM in addition to the number of OTVs and associated support mass required pro-
vides a relative measure of efficiency for a given vehicle family. Another
measure associated with the ELM is mass payback ratio. Mass paybackhratio is

the total Earth launch mass divided by the delivered payload mass.

The mission scenario, propellant supply scenarios, and basing options are
discussed in Section 4.0 with the sensitivity and trade studies. The propulsion
systems, vehicle systems, and vehicle family options are discussed here in
Section 3.0. The sections below describe the basic assumptions and the
resulting characteristics and parameters of the propulsion and vehicle systems.
Section 3.1 provides the basic mission requirements as dictated by the NASA/JSC
mission model. Section 3.2 provides data on the baseline propulsion/vehicle
concepts. Alternatives to the propulsion and vehicle systems are delineated in
Sections 3.3 and 3.4, respectively. Section 3.5 integrates the propulsion and
vehicle systems into sets of vehicles or families which are used in the trade-
off studies of Section 4. Section 3.6 provides an overview of the recommended

propulsion/vehicle systems.

3.1 Mission Requirements Definition

NASA/JSC supplied the mission model, which is shown in Figure 3-3 and Table
3-1., The nominal mission model covers 20 years from 1995 to 2015. The darkened
bars in Figure 3-3 represents the initial mass to the Lunar surface or to Lunar
orbit, The open bars denote payload delivery to the Lunar Surface/orbit not
directly associated with propellant production. The mission model shows gaps
with no flights in 1997-1998, 2000-2002, and 2012 and uneven flight rates over

the 20 year mission period. However, this does not greatly impact transpor-
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TABLE 3-1. JSC LSB MISSION MODEL, JANUARY 1986

YEAR DESTINATION NO. OF PAYLOADS MASS, MT (klbs) '~ MANNED
LO LS RETURN

1995 X 1 22.7 (50)
1996 X 1 22.7 (50)
1999 X 1 8.2 (18)
2003 X 1 X
2004 X 1
2005 X 2 23 (5) X
X 3 192 (42.4)
2006 X 1 192 (42.4)
3 23 (5) X
2007 X 1 22.7 (50)
X 3 23 (5)
X
X 1 192 (42.4)
9 23 (9) X
2009 ¥ 2 192 (42.4)
L 3 159 (35)
4 159 (35)
2010 X 3 10.4 (23) X
X 3 36 (8) X
X 1 227 (50)
1 159 (35)
2011 X 5 104 (23) X
X 4 3.6 (8 X
159 (35)
2013 X > 104 (23) X
‘ X 1 3.6 ( 8) X
|
| 3 104 (23) X
| 2014 X 3 3.6 ( 8) X
|
| 2015 X : 36 (8 *
% 45.4 (100)
| 108.9 (240)
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tation vehicle comparisons since the analysis is primarily based on total

flights over the 20-year mission period.

The key factors that influence the vehicle design are the delta-v require-
ments between basing and propellant supply nodes. Nodes were chosen in the most
obvious locations, LEO and Low Lunar Orbit (LLO). The resulting velocity incre-
ments are shown in Figure 3-4. With the nominal Moon-to-Earth trajectory

selected, inclusion of an aerobrake would save over 3 km/sec. (9840 ft/sec.).

Other assumptions include typical payload and manned capsule mass. The
manned capsule was assumed to have a mass of 6.9 metric tons (MT) (15 klbs)
(NASA/JSC, 1986). Payloads fall into six major sizes; 17 payloads at 2.3 MT (5
klbs), 4 at 3.6 MT (8 klbs), 12 at 10.4 MT (23 klbs), 9 at 15.9 MT (35 klbs), 7
at 19.2 MT (42 klbs), and 4 payloads at 22.7 MT (50 klbs). The 22.7 MT payloads
are Lunar orbiters. The 19.2 MT payloads include power stations, initial
habitat/lab modules, and mobility/mining units.. The 15.9 MT payloads are sub-
sequent habitats, labs and scientific equipment. The 10.4 MT payloads are large
payloads on a manned sortie mission while the 3.6 MT missions represent smaller
payloads on a manned sortie and the 2,3 MT payloads are even smaller payloads

accompanying manned sortie missions.

3.2 Baseline Propulsion/Vehicle Concept

The baseline propulsion/vehicle concept was modeled after current NASA OTV
studies. The propulsion system used liquid hydrogen/oxygen propellants that
were pump fed to a chamber pressure of 1380 N/cmZ (2000 psi) and temperature of
3346 C (6055 F) at a O/F mixture ratio of 5.5. The resulting specific impulse
was estimated at 470 seconds. The basic propulsion system design was modeled
after the Aetoj>et dual propellant expander engine cycle. The total engine mass
was estimated at 95 kg (210 lbs). Table 3-2 provides a summary weight statement

for the baseline propulsion system derived from ELES.

Basic vehicle components were modeled after the Centaur D-1T. The Centaur
D-1T masses are summarized in Table 3-3. The propellant tanks were assumed to
be made from 301 CRES stainless steel at 0.36 mm (.0l4 in.) minimum guage size.

The tanks were cylindrical with elliptical ends of ellipse ratio 1.38.

The baseline infrastructure included three basing/servicing nodes, reusable
OTV, and a reusable lander., The nodes are at LEO, Low Lunar Orbit (LLO), and

the Lunar Surface Base (LSB), all being nodes for servicing, propellant supply
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and payload changeout. The OTV has two engines and is designed for a fully
loaded manned sortie of 15.9 MT (35 klbs) payload to LLO from LEO and returning
with only the manned capsule of 6.9 MT (15 klbs). The payloads larger than 15.9
MT (35 klbs) are delivered in multiple trips and manifested to fill the
vehicles. The baseline OTV includes an aerobrake with mass equal to 15% of the
reentry mass for the reference design mission, The baseline lander is a
reusable, two-engine vehicle with capability of delivering 15.9 MT (335 klbs)
(manned capsule plus payload) to the Lunar surface from Lunar orbit and
returning to Lunar orbit with 6.9 MT (the mass of the manned capsule alone).
The ASTROSIZE output masses for the baseline OTV and lander concepts are pro-

vided in Appendix D, and are summarized below:

OTV Mass, kg Lander Mass, kg
Dry (less AB & tanks) 1030 Dry (less landing gear & tanks) 1030
Aerobrake 3411 Landing Gear 1841
Oxygen Tank 367 Oxygen Tank 83
Fuel Tank 1,618 Fuel Tank 366
Propellant Capacity 83,892 Propellant Capacity 24,553
Payload 15,873 Payload 15,873
Mass Fraction: 0.93 Mass Fraction 0.88

The high mass fraction of the OTV is largely due to the large velocity
increments of the LEO-to-LLO trip and the associated large amount of propellant.
Figure 3-5 shows the variation of mass fraction as a function of delta-v and dry
stage mass for fixed Isp and payload mass. Current vehicle technology exhibits
mass fractions of upper stages to around 0.86. If tankage on current vehicles
(e.g. Centaur) is increased to provide larger propellant capacities, the mass
fraction will be driven higher; and this is the case here. The initial estima-
tes for the dry mass for the OTVs and landers were both derived from the ELES

code and considered identical.

The design of the Baseline OTV also allows transport of 33,682 kg of pro-
pellant (from LEO to LLO) for the lander. No propellant is carried back from

the Moon in the baseline case.

3.3 Alternative Chemical Propulsion Concepts
Alternatives to the baseline propulsion system were selected based on

recommended propellant candidates from Section 2.0, and on the propulsion sen-
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sitivities and trades identified in Figure 3-1. Section 5 will address tech-
nology requirements for each of the propulsion systems. Figure 3-6 presents a

summary of candidate propulsion system performance characteristics.

3.3.1 Hydrogen/Oxygen Propulsion

Hydrogen/oxygen propulsion system options of interest can be obtained by
varying mixture ratio, specific impulse, and thrust. Mixture ratios (mass ratio
of oxidizer to fuel -- O/F ratio) of 5.5 (baseline), 8.7, and 10.6 were con-
sidered. High O/F ratios are of interest because oxygen is readily available on
the Moon while Lunar fuels are problematic. Hydrogen/oxygen will theoretically
maintain combustion potential through mixture ratios greater than 100 (Eagle
Engineering, 1983). Mixture ratios of 35 and 50 have been studied (Waldron)
with Isp's of 233 and 203 seconds and combustion temperatures of 2500 and 3000
C, respectively and will be discussed briefly in Section 4.3.4. Efforts in this

study concentrated on mixture ratios within a factor of 2 of stoichiometric.

To account for uncertainty in baseline engine development, engine Isp of
460 and 490 were considered (baseline Isp = 470). Thrust variations were con-
sidered a reflection of the propulsion system design choices of the number and

size of engines.

The goal of a Lunar-based propulsion system is to operate with propellants
available on the Moon. For H/O engines, the higher mixture ratios will increase
the percentage of oxygen used for any given mission. The hope was that by
increasing utilization of Lunar oxygen, the propellant mass required from Earth,
and, therefore, the Earth Launch Mass (ELM) would be reduced. However, as shown
in Figure 3-7, the mixture ratio producing maximum specific impulse (Isp) is
approximately 6, and variation of this mixture reduces the specific impulse,
This reduction in performance increases the total propellant (fuel plus oxidi-
zer) required for any given mission, which increases vehicle size and resources

required for propellant production.

Therefore, there is a tradeoff. High mixture ratio engines can increase
utilization of Lunar oxygen, but, due to performance (Isp) degradation, they
will increase the total propellant required and the amount of fuel required
from Earth. The question is, what is the net effect on ELM? Effects of the
mixture ratio on the total ELM over the entire mission model is given in Section
4.3.4. The results indicate that high mixture ratios (>8.7) are not beneficial.

ELM is increased.
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Based on OTV studies, two different thrust levels, 33,363 N (7500 1b) and
66,726 (15,000 1b), were addressed. A tradeoff between number of engines and
the overall propulsion reliability was made in those OTV studies with two engi-
nes being the preferred number. The propulsion concepts developed here nomi-
nally include two engines except where minimum accelerations and thrust to mass
ratios cannot be met. This threshold is 1.8 for lander thrust to mass ratio and
0.1 for OTV thrust to mass ratio. The OTV thrust to mass ratio will determine
the length of burn required to meet a given mission requirement. Thrust to mass
ratios were monitored for lander configurations to detect when more than two

engines were required.

The design characteristics of the propulsion systems are provided in

Appendix C; overall vehicle mass estimates are provided in Appendix D.

3.3.2 Silane Propulsion

The silane/oxygen, LSiH4/L02; bipropellant combination for use in Lunar
base propulsion systems is a viable alternative to liquid hydrogen and oxygen as
both the oxygen and the silane can be produced on the Moon. Silane is stable
and storable in the space and Lunar environments with properties much like those
of oxygen. The silane propulsion system developed here is very similar to a
storable methane propulsion system with slightly higher Isp. The cycle uses a

gas generator to pressurize and inject the propellants. The delivered Isp was

estimated at 366 seconds, the nozzle exit area ratio was 300, the chamber

pressure was 690 N/cm2 (1000 psi), and thrust per engine was 33,363 N (7500 lbs)
at an engine O/F mixture ratio of 0.78. Figure 3-8 shows the theoretical maxi-
mum Isp versus mixture ratio of 0.85 at a nozzle exit area ratio of 100. The
basic engine design parallels the baseline hydrogen/oxygen propulsion systems.
The silane engine will be fuel cooled as are hydrogen/oxygen systems. This pre-
sents a technology problem of providing a liquid silane circulation system,
Fuel pump speeds are estimated at 59,000 rpms with a fuel boost pump to 19,700
rpms. The oxidizer pump speed also starts at 59,000 rpms with a boost pump to
31,000 rpms. The overall mass of each engine less fuel tankage is approximately

100 kg.

This conceptual design represents preliminary engine parameters. Chamber
pressure of 345 (N/cmZ) (500 psi) with an expansion ratio of 20 was investigated
resulting in a significantly lower Isp, 351.6 seconds, at an optimal mixture

ratio (theoretical) of 0.82. Increasing the chamber pressure and expansion
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ratio increased both the maximum Isp and the optimal mixture ratio. Additional

trades among chamber pressure, expansion ratio, specific impulse, and mixture

ratio should be analyzed.

3.3.3 Aluminum/Oxygen Hybrid Propulsion

An aluminum/oxygen hybrid propulsion system is another viable concept that
could be used in an Earth~Moon transportation scénario. Both of these pro-
pellants may be produced using the same processing technique on the Lunar sur-
face (see Section 2.0). Two different engine designs considered here were an
aluminum/oxygen slurry, and a solid aluminum and liquid oxygen hybrid engine.
Figure 3-9 provides a conceptual schematic of how solid aluminum rods may be fed
into the oxygen injector nozzles to be burned in the combustion chamber.
However, for modeling simplicity, the system analyzed to estimate the propellant
system parameters was an aluminum/oxygen slurry. This system used a gas genera-
tor bleed cycle whose fuel (aluminum/oxygen slurry) and oxidizer (oxygen) tanks
were both pressure fed with a cold gas (helium). The engine is cooled with the
liquid oxygen, just prior to mixing with the aluminum and finally injected into
the combustion chamber. The combustion temperature modeled was slightly above
4200 C with a combustion chamber pressure of 690 N/cm? (1000 psi). The
resulting delivered Isp was 260 seconds. This concept also assumes a nozzle
exit area ratio of 100, and a mixture ratio is 2.18. Figure 3-10 shows the
theoretical Isp for pure aluminum and oxygen. The aluminum/oxygen slurry is
stored at 3450 N/cm? (5000 psi), at 132 C in CRES 301 stainless steel tanks.

The overall propellant flowrate is 51.7 kg per second.

The aluminum/oxygen slurry is a very dangerous propellant which may be very
difficult to pump without inducing combustion., Thus, additional fluids may be
introduced to substitute for the oxygen in the slurry. One of these fluids may

be liquid hydrogen, which will be addressed in the next discussion of an

aluminized-hydrogen/oxygen propulsion system.

3.3.4 Aluminized-Hydrogen/Oxygen Propulsion

To enhance the use of the Lunar derived aluminum and oxygen without the
safety hazards associated with an aluminum/oxygen slurry, hydrogen may be used
to fluidize the aluminum powder. This idea is not new, as aluminum has been
added other 1liquid propellants and tested. Aerojet has tested the aluminum
hydrazine mixture in the Titan vehicles. This propellant, called alumazine is

really a gelled Aerozine-50 with aluminum suspended in it, with approximately
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30% of the total propellant fuel weight being aluminum. The gel was achieved by
addition of a substance called carbopol (about 1% by weight) which produces a
thixotropic gel. The characteristics of this matrix is that it resides as a gel
when it rests, but liquifies under sheer stress or vibration. When the stress
or vibration is removed the matrix returns to a gel which accommodates a suspen-
sion of solid particles much more easily than pure liquid. The alumazine/Ny04
was tested in a Titan II second stage in the early 1960s. Extremely good com-
bustion efficiency was achieved, however the combustion zones were very hot and
cooling was a definite problem as liquid hydrogen was not available for cooling.
This concept was abandoned in the 1960s for hydrogen/oxvgen and other propulsion
technologies being developed at that time. However, the approach and the
lessons learned from this technology development activity may be very useful in
analyzing and developing new concepts for an aluminumized-~hydrogen/oxygen

system.

The purpose of this propulsion system is to mix hydrogen and aluminum into
a fluid to be injected with oxygen into the combustion chamber. With the lack
of large quantities of hydrogen on the Moon, the goal is to reduce the hydrogen
to aluminum weight ratio, but still maintain the fluidized properties. An ini-
tial concept development has been pursued with 60X by weight hydrogen and 40% by
weight aluminum, The combustion pressure would be 690 N/cm2 (1000 psi) and
nozzle expansion ratio at is 100. The mixture ratio of the aluminum and hydro-
gen with oxygen was varied from 1 to 5 with an optimum around 2.6, yielding a
theoretical Isp of 472 seconds as shown in Figure 3-11. The delivered Isp was
not modeled, but was estimated at about 400 sec by comparisons of theoretical
and delivered Isp data. The overall propellant density at this mixture ratio is

approximately 1250 kg/m3 (0.0451 1bsm/in3). The combustion temperature was
estimated at 3270 K (5885 R). The engine mass without propellant tankage for

the aluminumized hydrogen oxygen propulsion system was estimated at 140 kg per

engine with engines that yield 33,363 N (7500 1bs) thrust each.

With its high performance, the aluminized-hydrogen/oxygen propulsion system
has great potential and represents a bridge between H/O and Al1/0 propulsion;
however, it is relatively unexplored technology. Fluidized -aluminum engines
have been addressed using helium as the fluid; however, no literature has been
identified to date that addresses using hydrogen as the fluidizing mechanism.
The 40/60 ratio of hydrogen to aluminum mass was chosen as an initial concept

based on experience with aluminum in hydrazine.
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A significant effort in modeling and analyses could contribute to the
understanding and optimization of this propulsion system. The increase in the
hydrogen/aluminum ratio may decrease the dependence on hydrogen, without signi-
ficant reductions to performance. New concepts and technologies must be deve-
loped to handle the tripropellant system with various injection, mixing and

propellant storage options.

3.4 Vehicle Systems Characterization

The major vehicle systems (other than propulsion) analyzed in this study
included aerobrakes, landing gear, propellant tankage and support system mass.
The support system mass included avionics structural support, thermal protec-
tion, fuel tank.pressure weights, fuel boiloff, residual fuels, interstage mass,
and miscellaneous masses all derived from the ELES code, which is based on
Centaur data. The miscellaneous masses include tracking systems, range safety
systems, auto-pilots, the electrical systems, the guidance systems, auxillary
propellant systems, motors, attitude control systems, and any adaptors needed
for the propulsion system itself. These mass estimates were given in Table 3-2,
The aerobrake, landing gear, and tank masses were all calculated, for a given

reference design mission.

Aerobrake masses were represented by a percentage of the reentry mass of
the entire vehicle system. Typical Earth-produced aerobrakes range in masses
from 15%Z to 50% of the reentry mass. We will see later in Section 4.0 that the
aerobrake mass must not exceed about 357 of the reentry mass to be of use for
Lunar base operations. The baseline aerobrake used in this study, given by JSC,
was 157 of the reentry mass. Aerobrake sensitivity studies were run from 157 to
30% of Earth-produced aerobrakes. Another concept that may be quite valuable is
that of a Lunar-produced aerobrake. JSC estimated that a Lunar-produced
aerobrake mass would be approximately 187 of the reentry mass (Lunar Surface
Return, 1984). Such an aerobrake would not have to be carried from LEQO to Low
Lunar Orbit and back again but simply from LLO to LEO. Also the Lunar derived
aerobrake would not be part of the ELM. The aerobrakes in the vehicle families
were calculated based on the reentry mass of design reference missions. The
mission included: (1) return of OTV with full payload only; (2) return of OTV
with full payload and a small portion of oxygen; and (3) return of OTV with full
payload and enough oxygen for the next outbound leg from LEO to LLO. The third
reference mission required an aerobrake of mass about 13 MT. Such a large

aerobrake may not be viable.
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Landing gear mass for a Lunar lander is a function of the landing mass of
the Lunar Lander. Typical ratios of landing gear mass to total landing mass on
the Moon are around 57%. Thus, a 5% lander mass was estimated for all Lunar

Landers. No sensitivities were run on landing gear mass.

Propellant tankage is a major part of the total vehicle mass. However,
advanced technologies in areas of tankage have allowed the specific mass of the
tankage to be quite low, even for cryogenics, Tank estimates for vehicles deve-
loped here were derived from the Centaur data using CRES 301 stainless steel as
the tank material, the tanks were configured in a cylindrical fashion with
elliptical end using an elliptical ratio of 1.38. The thickness of the tank
walls was estimated at 14 mils. Appropriate boiloff parameters were considered
in the ELES code for various propellants with this tankage. Scaling of the
tanks was done to accommodate specific reference design missions of the vehicle

tamilies and will be reported in the following section.

OTVs and landers were developed with reusability in mind. No expendable
vehicles were addressed. Figure 3-12 shows life cycle cost of an expendable
Centaur vehicle, a reusable ground based OTV and a reusable space based 0TV. 1In
all cases beyond the first eight years of the low mission model, the reusable
0TVs were less costly. Even in the periods of the first nine years, the cost of
the reusable OTVs over the expendable Centaur stage was not extreme. Expendable
Lunar lander systems will burden the OTV greatly as unproductive mass delivered
to the Lunar surface when compared to the reusable Lunar lander. This addi-
tional mass delivery would increase the total Earth launch mass by an order of
magnitude and should only be considered for a short period of time in the ini-

tial stages of the Lunar base, if at all.

3.5 Propulsion/Vehicle System Family Descriptions

The propulsion and vehicle systems described in the last two sections were
assembled in vehicle families (groups of vehicles that can satisfy the mission)
to assist in providing data points for analysis. It is a goal that at least 2
points of each line on Figure 3-1 be addressed by a vehicle family system. The
vehicle family systems were created by the ASTROSIZE computer code which uti-
lized inputs from the ELES code and specific design reference missions to size
the various vehicle subsystems; especially tankage, landing gear, and aerobra-
kes. All vehicle family systems were developed with the common basing scenario.

The basing scenario includes the Space Station in LEO to provide servicing,
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payload accommodation and propellant supply. A similar basing node located at
LLO will be needed ato-operate as a propellant storage depot, a payload transfer
from OTV to lander and for potential servicing of either the OTV or lander
systems., The Lunar surface base was seen as a propellant supply source from
which oxygen, aluminum, and silane could be supplied. 1In all, there are 30 dif-
ferent vehicle family systems, the ASTROSIZE vehicle mass outputs have been sum-
marized and placed into Appendix D, A summary of these vehicle families is

provided here.

Table 3-4 summarizes the mass and mass fraction data developed for all
propulsion/vehicle family candidates. Each OTV in the table is identified by
the letter "a"; each lander by the letter "b". O0TVs were single stage vehicles
providing transportation between LEO and LLO. The lander provided transpor-
tation between LLO and the Lunar surface. Single stage OTV/Lander concepts for
transportation between LEO and the Lunar surface were analyzed in the first
months of the study and ruled out because of high mass and propellant require~

ments.

Concepts with and without Lunar propellants were addressed. When a pro-
pellant source was not available on the Moon, the OTV was designed to accom-
modate enough propellant for its entire round trip and the lander trips
required. When propellant was available on the Moon, the OTV did not have to
carry all lander propellant or all propellant for its own return. The lander
was responsible to deliver all payloads and OTV propellant required from the
Lunar surface to LLO. However, the requirements for propellant delivery to LLO
were not used to size the lander. The lander was sized based on the payload
requirements. Multiple propellant delivery trips were provided where necessary.
The parameters in parenthesis in Table 3.4 represent data for vehicle families

designed without Lunar propellant being available.

The firsc family is comprised of an OTV and lander with a Baseline H/O pro-
pulsion system without Lunar propellants and with a nominal 157 mass aerobrake
and 5% landing gear mass. The Baseline has only one reference mission: no Lunar
propellant available. The second family represents the Baseline with Lunar oxy-
gen being available and the third family represents the Baseline with both Lunar
oxygen and Lunar hydrogen being available. Two reference missions exist for

families two and three: (1) with Lunar propellant available, and (2) no Lunar

propellant available. Note that the no Lunar propellant reference mission
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represents the Baseline case. As more propellant becomes available, the pro-
pellant tank mass for the OTV decreases by about 1.5 MT; oxygen availability
reduces tankage mass by about 0.7 MT while hydrogen availability saves an addi-
tional 0.8 MT. The oxygen availability also yield a 0.5 MT savings to the
aerobrake mass with Lunar hydrogen saving an additional 0.1 MT. The total pro-
pellant requirement for 15.9 MT payload delivery/return is reduced by over 50%
with Lunar oxygen and by over 65% with both Lunar oxygen and hydrogen. The
overall effect is a reduction of vehicle mass fraction requirements from 0.93 to
0.89 and 0.87 for Lunar oxygen and Lunar oxygen/hydrogen, respectively. Thus,
availability of oxygen from the Moon reduces the overall technology of require-

ment of the single stage OTV to conduct a Lunar mission.

The fourth family shown is the baseline OTV with an aluminum/oxygen lander.
The OTV mass parameters change because of the lander propellant requirements.
The '"no Lunar propellant" reference mission is not a logical mission because of
the large amounts of propellants required from Earth for the lander. The size
of the lander (when compared to the baseline lander) increases dramatically in
every category. However, when both the aluminum and oxygen are available on the
Moon, the lander becomes totally Moon-dependent and the OTV becomes partially
Moon-dependent. The result is an OTV mass about 57% of the Baseline OTV with a
mass fraction of 0.87. The total propellant requirement increases, but all
lander propellant and about 10%Z of OTV propellant are derived from the Moon.
This vehicle family is very beneficial for Lunar-basing and can be evolved from
the Baseline by the addition of an oxygen/aluminum processing and propulsion

systems.

The fifth and sixth vehicle families are very similar to the Baseline with
the exception of higher mixture ratio propulsion systems. The reference
missions of '"no Lunar propellant available" are not logical options because they
increase the propellant requirement from Earth., 1In both cases, the Lunar pro-
pellant available is oxygen; thus, comparison to Baseline with Lunar oxygen,
family #2, is logical. A slight reduction in overall vehicle mass is gained by
the higher mixture ratio systems but required mass fractions increase from 0.89

for mixture ratio of 5.5, 0.91 for mixture ratio of 8.7, and .93 for mixture

ratio of 10.6.

The seventh and eighth vehicle families also are very similar to the

Baseline, changing only Isp from 470 to 460 and 490 seconds, respectively. A
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reduction of Isp may increase the reliability of the engine by "unstressing"
components. The reduction to 460 seconds increases both vehicle and propellant
masses by less than 5% of the Baseline, but does not change the mass fraction,
Increasing Isp to 490 reduces vehicle and propellant masses by 37 and 8%,
respectively, without Lunar propellant. The same increase in Isp in the Lunar
oxygen scenario reduces the vehicle and propellant masses by 18% and 28%,
respectively. Thus, increasing Isp is much more effective in a Lunar propellant
scenario. However, the increased Isp would significantly increase engine stress

levels.

The ninth vehicle family shown is also a pertubation of the Baseline
without an aerobrake. The tenth, eleventh, twelfth, and thirteenth vehicle
families represent the Baseline with varied specific masses of the aerobrake of
18%, 20%, 25% and 30% as shown. The all-propulsive OTV is 50 to 60% less
massive than the Baseline in the '"no Lunar propellant" reference mission, Family
#1, and Family #2 in the Lunar oxygen scenario. However, the propellant
requirements are approximately 69% higher without Lunar oxygen and 10%Z higher
with Lunar oxygen. Thus, Lunar oxygen availability makes the aerobrake and the
all-propulsive vehicle designs much more competitive. The aerobrake tends to
lower the mass fraction of the OTV as shown in Figure 3-~13. Also shown in
Figure 3-13 is the mass fraction reduction as the relative mass of the aerobrake
increases. The mass of the vehicle increases from about 50% for aerobrakes mass
increase from 15% to 30% of reentry mass while the total propellant requirement
increases only about 14Z. This result shows the benefit of the aerobrake,
however, increasing aerobrake mass incurs diminishing returns of the benefit
until the total propellant requirement from Earth is equal to the all-propulsive
vehicle. This is discussed in the overall system analysis results of Section

4.3.2.

The fourteenth vehicle family is the Silane/oxygen OTV and lander using the
15% aerobrake, 5% landing gear weight. The Silane vehicle families show quite a
reduction in vehicle mass because of the opportunity to utilize the lunar pro-
pellants for both the OTV and Lander. This vehicle family would not be used if
Lunar propellants were not available. Because of the lower Isp, the mass frac-
tion of the Silane OTV is 0.94, which is high when compared to the H/O OTV (with

Lunar oxygen) of 0.89.
The fifteenth family shown is aluminized-hydrogen/oxygen OTV and lander
with the Baseline aerobrake and landing gear. The aluminized-hydrogen/oxygen
98
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(Al1-H/0) family also shows a reduction in mass from the H/O families, but not as
great a reduction as the Silane vehicles. The Al-H/O system is more massive
than the Silane system largely because of propellant tankage requirements. The
mass fraction of the Al-H/O system falls between the H/O and Silane systems at
0.92. Without Lunar propellant availability, the Al-H/O system is not a logical

transportation system,

Sixteenth and seventeenth vehicle families are perturbations of the
Baseline with modified payload capabilities being 10 MT and 20 MT as shown.
Little effect of payload was noticed when a constant total delivery mass to the

moon 1is considered.

The eighteenth vehicle family is comprised of a baseline H/O OTV and lander
with the nominal aerobrake and landing gear that provides the capability of
returning enough Lunar oxygen to LEO to support its initial trip from LEO to
Lunar orbit. Thus, this last case represents a vehicle family that has its fuel
totally Earth-supplied, but its oxidizer totally Lunar-supplied. The amount of
Lunar oxygen returned in this last vehicle family is approximately 69.4 MT.
However, the aerobrake becomes extremely massive (13.5 MT) and the propellant
requirements equally massive. Although the vehicle is huge, the mass fraction
is relatively small at 0.82. 1In this case, the "cost" of Lunar propellant pro-

duction becomes especially important.

The mass fractions of these vehicle families vary between 0.87 and 0.97.
Higher mass fractions are found in the vehicles without Lunar base propellants.
This is logical as more propellant must be carried to the Moon for the return
trip of the OTV and the additional propellant tankage, which have relatively low
specific mass, do not greatly increase the total vehicle dry mass. The mass
fractions of the lander vehicles are relatively insensitive to the availability
of Lunar propellant, due to the fact that propellant delivery to LLO from the
Lunar surface was not used to size the lander. The propellant was accommodated

through multiple lander trips.

In summary, looking at the different propellant alternatives, it appears
that the hydrogen/oxygen systems have the lowest mass fraction, followed by the
aluminized-hydrogen/oxygen OTV and the silane/oxygen OTV. These relationships
also hold for the landers of these propellant options. The relationship between

the vehicle mass fractions and the payload capabilities is relatively straight-
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forward, heavier payloads require vehicles with higher mass fractions. When
looking at aerobrake mass changes, heavier aerobrakes (those with higher percent
mass) actually reduce the vehicle mass fraction. Also notice that for the case
of no aerobrake, mass fractions required are extremely high., From these mass
fraction estimates, one may deduce that some type of aerobrake may be necessary
for efficient transportation to the Moon simply because we are not able to build
an OTV with mass fractions as high as 0.972. However, note that the availabi-

lity of Lunar oxygen significantly reduces the vehicle mass fraction,

A final note about the Baseline H/O OTV and lander designed to return
enough oxygen to supply its next trip from LEO to LLO. The mass fractions of
this vehicle are very low, around 0.82, but the dry mass of the vehicle itself
is high, mainly due to the extremely heavy and large aerobrake required. Such

aerobraking capability does not exist.

This vehicle family data was input to the program, ASTROFEST, to produce
data on number of flights, propellant requirements, and total Earth launch mass

for the entire mission model scenario given. Results are given in Section 4.0.
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4.0 LUNAR SURFACE BASE MISSION SENSITIVITIES AND TRADEOFFS

One of the goals of this study was to examine variations of propulsion
system design characteristics and alternatives in lunar base mission operations
and systems. Section 2 describes the propellant alternatives and their asso-
ciated processing techniques. Section 3 describes the propulsion and vehicle
systems alternatives and develops vehicle families (a '"family" is a selected
combination of vehicles (e.g. a hydrogen/oxygen (H/0), orbital transfer vehicle
(OTV) and an aluminum/oxygen launch lander sized to satisfy all of the require-
ments of the mission model). This section applies those vehicle family alter-
natives to the Lunar base mission model to derive cost and Earth launch mass
requirements for each alternative. This section describes the analyses and
results of study Task 3 (Assessment of Transportation Systems and Operations)
and determines which propellants and propulsion/vehicle systems are most effi-
cient with respect to the Earth-Moon transportation system. Both transportation
system cost and total Earth Launch Mass (ELM) will be considered. The analysis
flow is depicted in Figure 4-1,. To develop the data with which to compare
alternatives, the mission model was manifested out to vehicles within a family
to produce a traffic model which determines total propellant requirements at the
various nodes. These propellant requirements then allowed estimation of pro-
pellant processing resource requirements required at the different nodes. The
resource requirements then were integrated into the mission model as support
requirements. The traffic model was updated as a result of additional pro-
pellant and propellant processing resource requirements. Iterations were per-
formed to arrive at the total ELM for the given mission model scenario. Once
the ELM was estimated and the final traffic model determined (with specific
flight rates for the OTV and lander vehicles), the total transportation cost was

determined by estimating the DDT&E, vehicle unit, and launch costs.

This section includes the cost estimates, total ELM estimates, and finally
the results of sensitivity and tradeoff analyses. The sensitivity and tradeoff
analyses will address the effects of Lunar propellant availability, specific
aerobrake mass (with and without Lunar propellant availability), propellant pro-
cessing consumable requirements, mixture ratio, specific impulse (Isp), payload

mass, and Space Shuttle scavenging on ELM,
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4.1 Relative Costs of the Lunar Base Mission Model Scenarios

The costs of the Lunar base mission scenarios are based on the total Earth
launch mass for a given vehicle family, the procurement cost of the vehicles,
and the DDT&E costs of those vehicle/propulsion syétems. These cost figures are
meant for relative comparison among vehicle families for the three major cost
elements. Total ELM cost will include the cost of launching the mass of the
missions themselves (the payloads), the propellants to deliver those payloads,
the equipment and consumable resources required to produce propellants on the
Moon, and the additional propellant required to deliver those resources. The
vehicle procurement costs are relatively small because of the small vehicle
flight rates (78-84 flights over 20 years) for landers and OTVs in most vehicle
family scenarios. The DDT&E costs for the various propulsion vehicle svstems
are estimated based on available OTV estimates. Figure 4-2a and b shows the
total transportation cost for each vehicle family, and ELM cost, vehicle DDT&E
cost and production/acquisition costs. (Figure 4-2a is a legend that defines
vehicle families identified by code number in Figure 4-2b; Figure 4-2b gives
costs for vehicle concepts assuming Lunar propellant availability in 1995). The
lowest cost vehicle family is the baseline hydrogen/oxygen OTV and lander with
both Lunar oxygen and Lunar hydrogen available at a cost of about $6 billion
dollars over the 20-year mission model., This does not include any of the Lunar
base habitats or laboratories themselves, nor does it include the Low Earth
Orbit (LEO) or Low Lunar Orbit (LLO) space station capabilities. DDT&E and pro-
duction costs range from $2 to 4 billion dollars for all vehicle families. Note
that in every case the ELM cost is still the major portion of the total
transportation costs of the Lunar surface base mission scenario. Thus, reduc-
tion of Earth support becomes a major design driver of the vehicle/propulsion
design, The following subsections discuss the cost estimates derived from the

ELM and from the vehicle DDT&E and production estimates.

4.,1.1 Earth Launch Mass Cost

Figure 4-3 shows the total ELM for the various vehicle families for cases
of no Lunar propellant available, Lunar propellant available after 2005 and
Lunar propellant available from 1995 through 2015. The numbers on the horizon-
tal axis of this bar chart relate to the key in Figure 4-2a. Again, one can see
that the baseline hydrogen/oxygen propulsion/vehicle system with both oxygen and
hydrogen available on the Moon requires the least amount of resources from the
Earth. Following as a close second is family number three which is the

hydrogen/oxygen baseline OTV with an aluminum/oxygen lander.
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The data that was used to derive the ELM is provided in Appendix D from the
ASTROFEST model. That data lists the propellant requirements at the Lunar sur-
face and at LEO for each year of the mission model and sums up the total pro-
pellant and resource support requirements for the entire mission model. A
comparison of some of the more promising vehicle families is provided in Figure
4-4 for each year of the mission model. The vehicle families included in this
chart are Baseline hydrogen/oxygen family (0), the hydrogen/oxygen OTV with the
aluminum oxygen lander (3), the hydrogen/oxygen OTV and lander concept with
Lunar oxygen and Lunar hydrogen availability (2), the hydrogen/oxygen OTV and
lander with Lunar oxygen availability (1), and, for comparison, the silane OTV
and lander (15) and the aluminumized-hydrogen/oxygen OTV and lander (16) con-
cepts. The number in parenthesis refer to Figure 4-2a and the number of the

line on the graph.

The majority of ELM is propellant required to deliver both the pavloads and
the Lunar propellant processing resources. Figure 4-5 provides the Earth, Moon,
and total propellant requirements for the various vehicle families. The vehicle
family with the lowest total propellant requirement is not necessarily the
family with the lowest Earth-supplied propellant requirement. The hydrogen/
oxygen OTV with the aluminum oxygen lander which had the 1lowest total ELM
requirement has one of the largest total propellant requirements; most of the
propellant is Lunar-supplied. The hydrogen/oxygen OTV and lander with both oxy-
gen and hydrogen available from the moon has by far the lowest Earth-derived
propellant requirement and has the second lowest total propellant requirement.
These variances are largely due to the differences in Isp and the differences of
the propellant processing requirements. An assessment of the effects.of Lunar
propellant processing on the total Earth launch mass of these various vehicle

families will be addressed later in Section 4.3.

The relationship between the ELM and cost is simply the delivery cost per
pound to low Earth orbit. This ELM cost has been estimated at $2400 a pound
(A.D. Little, 1986).

4.1.2 Vehicle Development and Production Cost

As was shown in the total cost figures, vehicle design, development,
testing, and engineering (DDT&E) is not an insignificant portion of the total
cost of the Lunar base mission scenario. This cost may be broken down into the

cost of buying new vehicles as they are expended and the cost of design, deve-
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lopment, and testing, and engineering (DDT&E). Flight operations costs
including aerobrake replacement and vehicle maintenance are not included in
these estimates. Figure 4-~6 shows the estimated DDT&E costs and unit production
costs in millions of dollars for the various new vehicle propulsion concepts.
All of these costs are derived from the current OTV studies being conducted by
NASA. The DDT&E column has been adjusted for state-of-the-art technology
levels, and technology development needs which will be discussed in Section 5.0.
The unit costs also are based on the OTV studies. A lander is slightly less
expensive than an OTV because it is assumed the OTV will be developed first and
the lander will use many of the OTV systems and components; e.g., avionics,
electronics, structures, and materials. The total vehicle production cost 1is
based on the vehicle fleet size dictated by the mission model requirement. The
flight rates are of fairly small magnitude, on the order of 10 to 15 per year,
and thus only 2-4 OTV and landers are required. A more robust mission model
could induce many more flights per vehicle and thus ambrtize the high design,
development, and testing cost. The assumed vehicle lifetimes are as follows:
(1) for all hydrogen/oxygen OTV and lander concepts with nominal mixture ratios
of 5.5 and Isp's of around 470 seconds, the lifetime is estimated at 40 flights
(NASA/MFSC, 1986); (2) for hydrogen/oxygen systems with higher oxidizer fuel
(0/F) ratio, lifetimes are about 35 flights, largely due to cooling problems
within the engine and the potential of having to go to an oxidizer-cooled engi-
ne; (3) the Silane/oxygen systems have an estimated lifetime of 30 flights
because of technologies are in an early stage and the presence of abrasive sili-
con as a byproduct in the propellant fluids; 4) for the
aluminumized-hydrogen/oxygen systems, a lifetime of 30 flights is assessed due
to oxygen cooling and aluminum particulates in the propellant and effluent; and
finally (5) for the aluminum/oxygen system, a 25 flight lifetime is estimated
largely because of extremely high content of particulates, the absolute
necessity of oxygen cooling, and difficulty with slurry injection and uniform
combustion., These lifetimes were used with the estimated flight rates generated
by ASTROFEST to yield estimated fleet size, and thus a total cost of the vehicle

tamily fleet.

4.2 Earth Launch Mass Estimates
The total ELM estimates for any given vehicle family is comprised of the
propellant requirements, the actual payloads that must be delivered to either

low Lunar orbit or to the Lunar surface, and any support requirements including
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equipment and consumables for propellant processing. Of these three, the pro-
pellant for delivery of the payloads and support requirements are by far the

largest portion of the total ELM.

One key parameter related to ELM is a value known as the mass payback
ratio. This ratio relates the mass required in LEO to the productive mass deli-
vered to the Lunar surface. To obtain this mass payback ratio we have divided
the total ELM by the total mission model mass. Thus, there is a different mass
payback ratio for each vehicle family and these are listed in Table 4-1. These
mass payback ratios range from 2.5 to 6.2 and can be used to estimate the total
ELM of any given mission to the Moon on a rough order of magnitude basis. These
mass payback ratios calculated here include only the propellant, and propellant
processing support masses. They do not include the vehicle masses involved for
the trausportation system because these masses were not included in the ELM exa-
mined here,. The -mass of the transportation vehicles would change the mass

payload ratios by about 0.5%.

4.3 Sensitivity and Tradeoff Analyses
The design characteristics of both the vehicle and propulsion systems as

well as the propellant production scenarios will be compiled in this section and
related to the total ELM of the Lunar based mission scenario. Key sensitivities

and trades considered include:

o Effects of Lunar propellant production

o Effects of aerobrake specific mass

o Effects of consumable requirements for propellant processing
o Effects of hydrogen/oxygen mixture ratio

o Effects of hydrogen/oxygeﬁ specific impulse

o Effects of payload mass

o Influences of Shuttle scavenging.

The sensitivity analyses will address introduction of Lunar propellant pro-
cessing at wvarious periods of the mission model. Three basic scenarios exist:
no Lunar propellant available at all, Lunar propellant available after the year
2005 through the year 2015, and Lunar propellant available over the entire

mission scenario from 1995 to 2015.

4.3.1 Effects of Lunar Propellant Processing on Earth Launch Mass
When addressing effects of Lunar propellant processing on ELM one is

actually measuring the value of the transportation system and associated Lunar
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I3

VEHICLE FAMILY MASS PAYBACK
RATIO
LUNAR PROP. - 1995
(0) BASELINE OTV & LANDER (NO LUNAR PROPELLANT) 6.10
(1) BASELINE OTV & LANDER (LUNAR OXYGEN AVAILABLE) 3.36
(2) BASELINE OTV & LANDER (LUNAR OXYGEN AND HYDROGEN AVAILABLE 2.30
(8) H/O OTV AND Al/O LANDER (LUNAR OXYGEN AND ALUMINUM) 2.56
(4) H/OOTV & LANDER; MR = 8.7 (LUNAR OXYGEN AVAILABLE) 3.54
(5) H/OOTV & LANDER; MR = 10.6 (LUNAR OXYGEN AVAILABLE) 4.01
(6) H/OOTV & LANDER; Isp = 460 (LUNAR OXYGEN AVAILABLE) 3.50
(7) H/O OTV & LANDER,; Isp = 490; (LUNAR OXYGEN AVAILABLE) 3.13

(8) H/OOTV & LANDER; PAYLOAD = 10 MT (LUNAR OXYGEN AVAILABLE) 3.38
(9) H/OOTV & LANDER; PAYLOAD =20 MT (LUNAR OXYGEN AVAILABLE) 3.29
(10) H/O OTV & LANDER; NO AEROBRAKE (LUNAR OXYGEN AVAILABLE) 3.94

(11) H/O OTV & LANDER; AEROBRAKE MASS = 18% OF REENTRY 3.44
(LUNAR OXYGEN AVAILABLE)

(12) H/O OTV & LANDER, AEROBRAKE MASS = 20% OF REENTRY 3.50
(LUNAR OXYGEN AVAILABLE)

(13) H/O OTV & LANDER, AEROBRAKE MASS = 25% OF REENTRY 3.66
(LUNAR OXYGEN AVAILABLE)

(14) H/O OTV & LANDER, AEROBRAKE MASS = 30% OF REENTRY 3.84
(LUNAR OXYGEN AVAILABLE)

(15) SiH4 /OXYGEN OTV & LANDER 4.20

(16) ALUMINIZED - HYDROGEN OTV & LANDER 4.34
(LUNAR OXYGEN AND ALUMINUM AVAILABLE) (3.11)”

(17) H/O OTV & LANDER WITH LUNAR OXYGEN RETURN TO LEO 3.49

* ALUMINUM, HYDROGEN AND OXYGEN AVAILABLE ON THE MOON

TABLE 4-1. MASS PAYBACK RATIOS FOR VARIOUS VEHICLE FAMILIES
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propellant processing system using ELM as the measurand. Generally, Lunar pro-
pellant availability reduces the total mass, the mass fraction, and the ELM of
the OTV. In addition, the earlier establishment of the Lunar propellant supply
within the mission scenario further lowers the ELM. Specifically, the effects
of Lunar oxygen on Baseline hydrogen/oxygen OTV and lander, the effects of Lunar
oxygen and Lunar hydrogen availability on the baseline systems, and the effects
of Lunar oxygen and aluminum on the hydrogen/oxygen OTV and aluminum/oxygen

lander system are addressed in this section,

The effects of the availability of Lunar oxygen are shown in Figure 4-7 for
the Baseline system and the three major supply scenarios of: no Lunar pro-
pellant; Lunar propellant available after 2005 through the year 2015; and Lunar
propellant available through the entire mission scenario 1995 through 2015.
Lunar oxygen availability throughout the entire mission model will reduce the
total ELM by 52.5% as compared to the Baseline where no Lunar propellant is
available. Providing the Lunar oxygen at a later date, in this case 2005, still
induces a substantial benefit of 45.5% over the Baseline because the major
mission model activity resides in the years 2005 through 2015. These data show
that an evolutionary system providing no Lunar propellant through the year 2005
with evolution to Lunar oxygen processing facility in 2015 does not substan-
tially increase ELM as compared to providing Lunar oxygen at day one (1995) of
the Lunar base. The potential effect of Lunar oxygen is sufficiently large if
Lunar processing requirements are kept low to identify it as a priority item in

the Lunar transportation system.

Similar results are found in Figure 4-8 when considering the availability
of both Lunar oxygen and Lunar hydrogen. Subplying Lunar oxvgen and hydrogen to
the baseline system for the entire mission scenario, the ELM may be reduced by
67.5% over the Baseline. Introducing these two propellants from the Lunar sur-
face at a later date, 2005, still reduces ELM by over 50%. Thus the overall
atfects of introducing Lunar propellant is seen as extremely valuable in
reducing ELM by more than one half of that for a totally Earth LEO-based
transportation system. Further evidence of this will be shown in future sen-

sitivity results.

The combination of an aluminum/oxygen lander with a hvdrogen/oxygen OTV is
a potentially economical family. Providing both aluminum and oxygen from the

Moon produces a greater benefit because both aluminum and oxygen can be produced
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in the samé process. Because of the relatively low performance of the
aluminum/oxygen lander, a great deal of propellant is required from Earth if
none is available from the Moon. Therefore, the aluminum/oxygen lander is not
logical to consider if no Lunar propellant is available. By introducing the
Lunar propellant after 2005, the Earth launch mass can be reduced by more than
72%. By introducing both aluminum and oxygen as Lunar propellants in 1995, the
ELM may be reduced by 88.7%, nearly an order of magnitude., The ELM for this

family with Lunar propellant is comparable to the H/O systems with Lunar oxygen.

These results also apply to the Silane/oxygen and aluminized-hydrogen/
oxygen families. The aluminized-hydrogen/oxygen (Al1-H/0) family has two major
propellant supply alternatives: (1) Lunar supply of aluminum and oxygen only,
and (2) Lunar supply of hydrogen, aluminum, and oxygen. “The ELM is 4974 metric
tons (MT) for the first scenario and 3564 MT for the second scenario. This com-
pares to 8083 MT for the Baseline case. Thus, supplying Lunar hydrogen in addi-
tion to aluminum and oxygen decreases the ELM requirements by 28%. The totally
Lunar propellant-supplied Al-H/O vehicle family is attractive but less benefi-

cial thaa the H/O system with Lunar hydrogen and oxygen available.

4.3.2 Effects of Aerobrake Specific Mass on Earth Launch Mass

Aerobrakes are a very effective means of reducing the propulsive velocitv
requirements (Delta-v), thus reducing propellant quantities required. However,
the aerobrake represents an increase in dry mass which must be transported from
Low Earth orbit (LEO) to low Lunar orbit (LLO) and back to LEO. Two major sour-
ces types of aerobrakes possible are Earth-produced aerobrakes and Lunar-
produced aerobrakes. Results demonstrated here consider the nearer technology
of Earth-produced aerobrakes and the sensitivities of those aerobrakes to the
ELM. The mass of an aerobrake is typically stated as a percentage of the total
reentry mass of the vehicle family. Figure 4-9 shows the effect of aerobrake
masses on total ELM without any Lunar propellant supply available. The benefit
oif having a 15% specific mass aerobrake over no aerobrake is a savings of about
22% of the ELM. However, as the specific aerobrake mass increases from 15 to
30% the ELM increases from 8260 MT to approximately 9000 MT reducing the ELM
benefit to 13.57%. Extrapolating these results as shown in Figure 4-10, the

aerobrake specific mass must be less than 357 of the reentry mass.

When considering the same aerobrake masses for a Lunar oxygen supply sce-

nario beginning at 1995 the 15% specific mass aerobrake saves only about 15% of
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the ELM as shown in Figure 4-11, . The ELM then from 3850 MT to 4403 MT as the
mass of the aerobrake increases from 157 to 30% of the reentry mass. The ELM is
about 4520 MT without an aerobrake. Extrapolating the ELM as a function of
aerobrake specific mass as shown in Figure 4-12, illustrates that the maximum

mass of the aerobrake is about 32 MT to have a beneficial impact on the ELM.

In summary, the availability of Lunar oxygen is a much more significant,
beneficial technology than the aerobrake. Figure 4-13 shows the relative bene-
fits of any combination of single technology implementations with respect to
aerobrakes and Lunar oxygen supply. The aerobrake masses effect ELM more signi-
ficantly when a Lunar propellant supply of Lunar oxygen is not available. Earth

launch mass by 260 MT when there is no Lunar oxygen supply.

4.3.3 Effects of Propellant Processing Consumable Requirements on Earth
Launch Mass

The effects of propellant processing consumable requirements on ELM is a
key consideration for two reasons. First, it may help determine when a specific
propellant processing technique is no longer beneficial in terms of the amount
of required consumable mass per unit mass of propellant. Second, it will show
the sensitivity of our analysis results to consumable estimates and thus reveal
where extreme care should be taken to ensure accurate assumptions and estimates.
Consumable requirements will be addressed for three different systems: the base-
line hydrogen/oxygen system with Lunar oxygen production on the Moon, the
hydrogen/oxygen system with both Lunar oxygen and Lunar hydrogen on the Moon,
and finally the hydrogen/oxygen OTV and aluminum oxygen lander with both alumi-
num and oxygen available on the Moon. The consumable rates, kilograms per unit
mass of production, were increased by 4%, 8%, 12%, and, in some cases, 16%, and
20% to determine the additional resource requirements that must be delivered to
ﬁhe Moon from Earth to manufacture the same amount of propellant for the same
mission scenario. Figure 4-14 shows the effects of changes in the consumable
requirements for Lunar oxygen the baseline hydrogen/oxygen system. Notice that
an increase of 207% in the Lunar consumable resource per unit of oxygen increases
the total ELM by almost 100%. Figure 4-15 shows similar curves for the oxygen
and hydrogen supply from the Moon for the same detailed system. The 20%
increase in consumable requirements per pound of product when both oxygen and
hydrogen are produced induces less than a 79% increase in Earth Launch Mass
requirements. Finally, in Figure 4-16 the consumable requirements for produc-

tion of aluminum and oxygen for the aluminum/oxygen lander in the H/0, OTV show
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again a drastic increase in the ELM. For only a 12% increase in the consumable

requirement per pound of oxygen a 69% increase in ELM is estimated.

To summarize, the ELM increases drastically with the percentage of con-
sumable requirements increase, and the ELM is very sensitive to the consumable
requirements per pound of products for any propellant production technique. The
sensitivity naturally increases as more propellant is produced on the Lunar sur-
face. Figure 4-17 shows the slow increases for the consumable requirements for
Families 1, 2, and 3. The slope indicates the sensitivity of the ELM to changes
in consumable requirements. The slopes are indeed greater for the aluminum/
oxygen propellant production scheme. This shows that increased dependence on
Lunar-derived propellant effects the maximum amount of consumable mass for any

given processing technology.

4.3.4 Effects of Hydrogen/Oxygen Mixture Ratio on Earth Launch Mass

Increasing mixture ratio will reduce the percentage of fuel required as
propellant for any given propulsion system. In the case of hydrogen/oxygen pro-
pulsion systems, because hydrogen is a relatively scarce product on the Moon, a
high mixture ratio may be beneficial in meeting overall transportation require-
ments. However, as the mixture ratio diverges from the optimum the specific
impulse decreases and increases the total propellant requirement for any given
mission. Figure 4-18a shows the mass of hydrogen for the H/O OTV and lander
systems for a single mission as a function of mixture ratio. When higher mix-
ture ratios are used in the lander, specific impulse decreases and propellant
requirements increase., This increase in overall propellant increased the
requirement for hydrogen and hence the change in slope at a mixture ratio of
about eight. This result can also be seen in Figure 4-19, the ELM increases as

the mixture ratio increases from 5.5 to 10.6.

The question still arises: Is there an oxidizer to fuel ratio which takes
advantage of the Lunar oxygen supply without being burdened by additional pro-
pellant requirements which would induce additional hydrogen delivery from Earth,
When the vehicle families with hydrogen/oxygen propulsion system O/F ratios of
50 and 35 were run on ASTROFEST, very large numbers of lander flights were
required to supply an OTV with enough oxygen for the return trip because of the
reduced performance. This large number of lander flights required additional
hydrogen to be imported from Earth using the OTV and thus the total ELM is much

greater than for mixture ratios of 5.5 to 8. The only other question remaining
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may be presented by Figure 4-20, 1Is there an oxidizer to fuel ratio between 5.5
and 8.7 for which the ELM is lower than that mixture ratio of 5.57 This

question remains to be answered.

4.3.5 Effects of Specific Impulse on Earth Launch Mass

Three hydrogen and oxygen propellant systems of varying specific impulse
were run through the entire mission scenario, The three Isp's were: 460
seconds, 470 seconds, and 490 seconds. The propellant supply scenarios of no
Lunar propellant and Lunar propellant throughout the entire mission model were
addressed and the results are presented in Figures 4-21 and 4-22. Without Lunar
propellants available, a 30 second increase in Isp from 460 second to 490
seconds decreased the ELM by only 11%. When Lunar propellant was available the
same increase in specific impulse yielded about the same decrease in ELM,
approximately 10.6%. In summary, small increases in specific impulse on the
order of 30 seconds reduce the ELM by approximately 10% with or without Lunar

propellant production.

4.3.6 Effects of Payload Mass Capability on Earth Launch Mass

Sensitivities of the payload mass capability of any vehicle were investi-
gated with samples taken at 10 MT, 15.9 MT and 20 MT of payload (15.9 MT being
the baseline). As shown in Figure 4-23 little or no sensitivity was observed.
This is largely due to the manifesting of the various payloads in the mission

model which allowed little vacant space in any vehicle flight.

4.4 Space Shuttle Scavenging Impacts on Earth Launch Mass Requirements

Space Shuttle scavenging represents a potentially significant source of
hydrogen and oxygen in LEO. This source will have the effect of reducing ELM
requirements, specifically the propellant delivered from Earth to LEO. Current
Shuttle scavenging studies indicate that up to 91 MT of hydrogen and oxygen pro-
pellant could be supplied per year. Over a 20 year period this could amount to
up to 1800 MT (22% for baseline vehicle family). Thus, ELM of 1800 MT could be
saved over the mission model scenario. This amount of propellant and
corresponding reduction in Earth Launch Mass is equivalent to about 9.6 billion
dollars using the guidelines of costing as stated in Section 4.1. With Space
Shuttle scavenging and the use of Lunar oxygen propeilant the transportation
costs of the mission model could be less than $6 billion over the 20 year period

given.
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5.0 TECHNOLOGY REQUIREMENTS

A program to develop appropriate propulsion system and propellant tech-
nology needs to begin now if we hope to establish a cost-effective base on the
Moon by the year 2000. The technology plan for propellant/propulsion system
must be integrated with the overall Lunar base scenarios and planning. This
study recommends certain technology developments for the Earth-Moon transpor-

tation system including Lunar propellant production and usage.

The objective of the technology analyses within Task 4 of this study was to
identify technology requirements and develop preliminary plans for satisfying
those requirements. The scope included propellant supply, propulsion systems,
and transportation vehicle systems, With respect to propellant supplv, the
erfort focused heavily on the chemical processing of propellants from the Lunar
regolith (see Section 2.0). The Lunar propellant selections (hydrogen, oxygen,
silane, aluminum) coupled with mission and vehicle requirements largeiy deter-
mined propulsion system technology requirements. Vehicle system technology

requirements include aerobrake systems and various operational considerations.

Tasks 1 through 3 of the study explored a large number of options for pro-
viding Earth-Moon transportation and are described in Sections 2 through 4 of
this report. A screening process reduced the initial number of vehicle family
options. A few were chosen as being most beneficial. Sufficient uncertainty
exists in determining optimal system approaches at all levels (from overall
space program goals and commitments down to specific system characteristics) and
therefore, final selection of systems is premature. However, the concept recom-
mendations made here will serve to identify and characterize technologv needs
and the associated benefits. A continuation of system studies and funding of
technology development activities is needed to allow future selection of optimal
systems., A detailed technology development plan is required with a timeline
that is compatible with expected future decision points. A preliminary version
of such a plan is one end item of this task and is presented later in this sec-

tion.

This section of the report is organized into four subsections (5.1 to 5.4).
Subsection 5.1 delineates the approach taken in developing requirements and

plans. Subsection 5.2 presents a Lunar Surface Base development scenario used
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to establish timelines. Subsection 5.3 presents individual system technology
requirements that are key to leading space transportation options. Subsection

5.4 develops the preliminary technology plan.

5.1 Technology Analysis Approach

Technology development activities for the leading or more promising systems
must be carried forward in parallel with the goal of providing needed infor-
mation and meeting expected decision schedules. The final selection of Lunar
propulsion systems should follow key, well-planned technology developments and

Phase A and B. systems analyses.

To project dates when decisions would be needed, Astronautics constructed a
Lunar base transportation system development scenario described in Section 5,2,
The scenario was based on the mission model supplied by NASA JSC. The mission
model first was used to establish Initial Operational Capability (IOC) dates and
the evolutionary development of capabilities for major system elements. Once
this information was established, lead times for system developments were esti-
mated (based on historical precedence) to establish needed decision dates for
"Authority to Proceed" (ATP) with those developments. This then dictated the

timetable for system studies and technology development.

The most promising propulsion and transportation system options were deter-
mined in Tasks 2 and 3 which were used as guidelines in Task 4 to identify the
technology development requirements of each of those recommended options (see
Section 5.3). Each technology development item then was described, the work
required to achieve it briefly defined, and evaluated in terms of 1its gross
payback potential if implemented. Based on these results and other factors,
such as operational considerations, an assessment of need was made to determine

whether the needed technology development was '"enabling" or "enhancing'.

Given the technology need dates from the Lunar Surface Base Scenarios and
the individual technology developments, a preliminary, three-year technology
development plan was constructed and described in Section 5.4. The plan inclu-
des system level studies needed, focused technology analyses activities and
technology experimentation and development activities. It was time-phased to

provide logical sequencing of analytical and experimental activities.
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5.2 Lunar Surface Base (LSB) Scenario

The entire Lunar Surface Base (LSB) Scenario is presented as an evolu-
tionary development. In the pre-LSB IOC years, systems studies/trade-off analy-
ses and experiments lead to technology development and typical phase A, B, and
C/D of specific program definition, design, development and implementation.
Post-LSB IOC represents technology development missions, pilot systems and con-

tinued growth of LSB systems/operations.

As in the current Space Station program, post-LSB IOC activities are as
much a part of technology development as the pre-IOC developments. Figure 5-la
depicts the events that are estimated to occur after the I0C date which occurs
at the start of year 1 and continues for twenty years. The scenario initially
depends on an O/H transportation system using Earth-provided propellants. The
Lunar-derived oxygen, hydrogen, aluminum, or silane propeliant production and
associated propulsion systems would evolve over time. Lunar Remote Sensing,
site selection, mining beneficiation, oxygen production, propellant storage, and
LSB and Lunar orbit activities will occur throughout the post-ICC era. Lunar
remote sensing would be used to update maps of the Lunar surface, identify new
resource locations, and continuously monitor the status of excavation and mining
activities., Site selection will be a periodic activity throughout the LSB sce-
nario dependent on location of new resource locations and new resource/produc-
tion requirements. In-situ propellant production, acquisition, mining
production, storage, and use proceed through a logical sequence of technology
demonstration missions (TDMs), pilot facility construction and operation, and
full capability system construction and operation. The Earth and Earth orbit
testing of propulsion systems that would use Lunar propellants is assumed to

occur simultaneously with, Lunar propellant facility construction/testing.

Pre-I0OC technology developments are shown to accommodate the IOC implemen-
tation. Figure 5-1b presents the scenario for the ten years prior to I0C for
development of major system elements. For example Phase A, Phase B, and Phase
C/D program efforts are shown for Lunar oxygen (LLOX). These are preceeded by
technology demonstration (2 years) and system level experimentation and tech-
nology development (2 years). A 10-year system development cycle is recommended
for the Lunar oxygen production system, Subsystem and component level tech-
nology developments wmust preceed this system cycle. The Lunar remote sensing
and initial site selection activities must preceed the IOC to establish the LSR

site and specific resource locations.
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The LSB mission model projects an IOC of 1995. Astronautics LSB Scenario
indicates the earliest IOC probably would be about the year 2000, This would
allow a 10-year system development cycle preceeded by a 3-year subsystem/
component technology development program (experiments). Astronautics also
recommends that additional systems and tradeoff studies should be conducted in
the next two to three years to steer initial technology developments and that

detailed program plan for Lunar base development be prepared.

5.3 Key Technologies

This subsection describes the key technologies identified for leading
transportation system options. For each technology needed, development activity
is described, payback potential is estimated, and a determination is made as to
whether the technology is enabling or enhancing. Enabling and enhancing tech-
nologies for Lunar base chemical propulsion systems are summarized in Figure
5-2. Those for propellant supply technologies are summarized in Figure 5-3, and
those for vehicle technologies in Figure 5-4. Each technology is discussed
below. The scope is limited to chemical propulsion system and propellant
related technologies. Additional information on some technologies is included

in Appendix G.

5.3.1 Key Propulsion/Vehicle System Technologies

This section provides discussion of technologies listed in Figures 5-2 and
5-4. Studies by current OTV efforts of propellant transfer/handling, extended
life, light-weight structures and tankage and automation for propulsion/vehicle
systems are directly applicable to Lunar transportation and are, therefore, not

discussed here.

5.3.1.1 High Expansion Ratio Nozzle

Design studies and experiments necessary to establish the Isp gain versus
weight penalty. Cooling requirements and solutions must be determined. Design
concepts should be assessed against tradeoffs of engine sizing, thrust level,
single versus multiple engines, and Lunar landing/takeoff operations. An Isp
increase to 490 seconds would lead to reduction in propellant mass supplied from
Earth by about 6.7% and reduce the mass payback ratio from 3.36 to 3.13 over the
H/0 systems with Lunar oxygen. This is an enhancing high-value technology -- a

relatively low risk method of increasing Isp.
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5.3.1.2 High-Speed, Long-Life Turbomachinery

The use of high-speed turbomachinery is one of several approaches to liquid
rocket engine performance improvement, but its use alsc introduces high stresses
within the engine design. Typically, higher speed turbomachinery is easier to
achieve for smaller engines needing smaller diameter pumps. This technology has
cross—impacts with lifetime/durability considerations and the sizing/number of
engines. Introducing high-speed turbomachinery will increase the Isp of a given
engine and decrease the pump size/weight expense of reduced lifetime, reliabi-
lity, etc. There is a need to assess the tradeoffs of higher performance versus
lifetime and reliability issues which are also very important considerations in
a Lunar base scenario. This is an enhancing, high-value technology to improve

engine with low mass impacts in engine design.

5.3.1.3 Aluminum/Oxygen Combustion

Analytical studies to project/predict performance are needed. There is a
need to develop means to optimize performance and resolve anticipated combustion
problems. An AlQOy film will form on Al particles that retards/prevents com-
bustion. Also Al/0) usage leads to large, heavy combustion chambers and Isp
lower than H/0O. These problems and others need to be addressed for all of the
potential Al feed mechanisms proposed,. This technology could significantly
reduce the mass that must be delivered from Earth to orbit. The work proposed
is needed to produce stable, high-efficient combustion in compact combustors of
acceptable mass. The effect of MR in performance is believed to be a key issue.

This technology should enhance combustion efficiency and performance of the

Al/L0y propellant combination,

5.3.1.4 Aluminized-Hydrogen/Oxygen Combustion
There is a requirement to conduct analytical studies to predict perfor-
mance of Al-H/0 rocket engines. The formulation and characterization of stable,
premixed heterogeneous Al~H fuels will be difficult to accomplish because of the

wvidely disparable physical properties of LH; and Al, e.g.,

m.p.t.(K) b.p.t. (K) Density (g/cm3)
Hyp 114 20.2 0.07099
Al 387 2177 2.70

These heterogeneously fuels must be formulated and characterized as rocket pro-
pellants at one-g and zero—g. Means to optimize performance and deal with com-

bustion problems must be developed. Also AI—HZ/O use leads to large, heavy
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combustion chamberé and Isp much lower than H/O. These issues and others need
to be addressed. One approach that might help is a tripropellant injector (1L0,,
LHp, LHy-Al). The work proposed is needed to produce stable, high-efficiency
combustion in compact combustors of acceptable weight., This technology enhances
combustion efficiency and performance of the Al-LHy/LOy propellant combination
and would lead to a significant reduction in mass that must be lifted from Earth

to Earth orbit and a mass payback ratio of less than 4.3.

5.3.1.5 Silane/Oxygen Combustion
The SiH4/0 combustion process and products need to be analyzed to
predict performance. There is a need to conduct experiments to develop engine
performance parameters and deal with problems of engine durability/lifetime.
This technology could significantly reduce the mass flow from the Earth's sur-
face to Earth orbit, The work performed is needed to provide stable high-

efficiency combustion in compact combustion chambers of acceptable mass.

5.3.1.6 Combustion Efficiency and Combustion Chamber and Nozzle
Durability for Si and Al Based Fuels
There is a need to conduct spectroscopic analysis of combustion, exhaust to
develop more complete understanding of combustion processes and efficiencies,
and to investigate problems of slag formation and engine internal surface degra-
dation and erosion. This technology development work can provide better per-
forming, longer-lived engines. This technology enhances the performance,
lifetime, reliability of engines that produce silicate and metallic oxide

exhaust products.

5.3.1.7 Engine/System Health Monitoring
Advanced, long-lifed, space-based propulsion systems will need integrated
condition monitoring and control system hardware with predictive capability. An
on-board system is needed that will monitor the condition of components such as
pumps, injectors, valves, etc. and predict their future condition. This
requires development of sensor technology, systems integration, system
soft/hardware, and prediction data base generation. This is one of the keys to

successful space basing and represents an enhancing technology for economical

Earth-Moon operation.
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5.3.1.8 Enhanced O/F Ratio H/O Engines
There is a need to assess tradeoffs with respect to O/F ratio, Isp, weight,
reliability and durability of high O/F ratio engines. A slight increase in O/F
(below 8) may reduce Earth launch mass. Our analysis indicates that large
increases in O/F ratio do not appear to reduce overall Earth launch mass and
cost of the LSB mission scenario. Higher O/F ratios slightly higher than 6 may
enhance the Lunar transportation system by reducing hydrogen supplied from Earth

and increasing the dependence on Lunar-produced oxygen.

5.3.1.9 Cooling of High O/F Ratio H/O Engines
It is apparent that more analysis and tradeoffs of optimum MR for Lunar
missions with Lunar oxygen availability are required. Experimental programs to
develop and prove oxygen cooling techniques for these engines are needed. This
cooling technology is required for very high MR engine operations and for
Al/oxygen and Al-H/oxygen engines: Oxygen cooling is an enabling technology for

an enhancing engine option and is considered in enhancing technology to Lunar

base transportation,

5.3.1.10 Space Basing Capability
Propulsion systems must be compatible with space environments and opera-
tions on the Lunar surface and in cislunar space, in both operational and
storage/maintenance modes. Issues that must be addressed include Lunar dust
contamination, surface temperature fluctuations, design for semi-robotic main-
tenance and pre/post flight activities. Successful resolution of these issues
is necessary for successful space basing. This technology area is enabling with

respect to space basing.

5.3.1.11 Aluminum/Oxygen Engine Cooling

The conduct of preliminary design and analysis efforts to explore potential
cooling solutions. Experimental and developmental efforts must be performed to
verify the theory and implement solutions. Problems related to very high com-
bustion temperatures and low efficiency cooling from Al/0 propellants are anti-
cipated. Al/0 engines must be run at high MR (oxygen rich) to produce gas to
expand out the nozzle but this produces a wall compatibility problem. A signi-
ficant reduction in mass that must be launched from Earth to Earth orbit can be
achieved. This proposed work must also consider that the engine will eventually

be long~lifed, reuseable, and man-rated.
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5.3.1.12 Al1-H/Oxygen Engine Cooling

A preliminary design and analyses study on Al-H/O engine cooling concepts
must be conducted to explore potential solutions followed by experimental and
development efforts to verify and implement solutions. There is a need to
address problems of very high combustion temperatures with two phase (fuel)
coolant and low heat flux (oxygen) coolant. This technology could significantly
reduce the mass that must be lifted from Earth to Earth orbit. The work pro-
posed must also consider that this engine must also be long-lifed, reuseable,

and man-rated. This technology is enabling to successful operation of Al-H/O
engine.

5.3.1.13 Aluminum Feed in Al/0 Engine

Analytical and experimental programs are needed for introducing/feeding
aluminum into a combustion chamber to be burned with LO; for the Al/oxygen
hybrid engine. Candidate methods include: coated Al in gelled LO9; liquid Al
injection (with associated back-up systems); solid Al alloy plus LOj; and Al
powder introduction is similar to diesel or coal combustion. A significant
reduction in mass that must be lifted from Earth to orbit can be achieved and a
reduction in mass payback ratio to 2.56. This technology is enabling to the Al/

oxygen hybrid engine concept.

5.3.1.14 Aerobrakeing/Capture

The use of aerobrakes is either enabling or enhancing to the Lunar

transportation system depending on the availability and use of Lunar oxygen.
The development of a lightweight (15% of Earth entry mass) system is needed if
aerobrakes are to be of value, Without Lunar oxygen production on the Moon
aerobrake technology enables an efficient transportation system, With Lunar
propellant available the aerobrake only enhances the transportation system. TIf
Lunar oxygen is transported to LEO, the aerobrake again becomes an enabling
technology. However, this Lunar propellant return scenario will require a very
large transportation system with an aerobrake with mass of approximately 13 MT.
Technologies in large, low mass aerobrake systems should be continued and

tested.

5.3.2 Propellant Acquisition Technology
5.3.2.1 Locate Desired Lunar Resources and Mining Sites with Minimal
Multi-specimen Sampling
Remote sensing and other techniques such as nuclear bombardment have been

used ccessfully on Earth and should be employed on the Moon to detect mean
151

AstronautiCS CORPORATION OF AMERICA — TECHNOLOGY CENTER



particle size, surface roughness, and possibly chemical composition. The deve-
lopment and use of such techniques should reduce crew-hours (100's of hours) and
transport equipment requirements, This is key to the site location of any Lunar
resource processing plant, This technology would enhance the performance of

preprocessing and processing techniques.

5.3.2.2 Collection and Transportation of Raw Materials

Terrestrial mining machinery has been conceptually adopted for the Moon.
More innovative equipment and techniques should be investigated to better uti-
lize Lunar resources. Specific functional needs may include scooping, crushing,
dredging, plowing, and hauling. Also techniques of integrating the collection/
transportation systems and the preprocessing systems. This technology -would
reduce the consumable requirements required to take the Lunar regolith from its
natural state. This is enhancing technology to reduce basing and support

requirements.

5.3.3 Propellant Preprocessing/Beneficiation Technology
5.3.3.1 Separation of Ilmenite

Some experimentation of terrestrial simulant and Apollo ilmenite separation
has been achieved (Agosto, 1983) using magnetic and electrostatic separation
techniques, collecting up to 51-55% ilmenite concentrate in one pass. However,
an inverse relationship exists between the concentration and recovery percentage
of ilmenite. Multiple ©passes on larger scale separations should be
accomplished. The effects of the lack of Fe3* in Lunar ilmenite separation
should be investigated. This technology could reduce the specific consumption
of oxygen production by 30 - 40X, This technology would enhance efficiency of
Hydrogen Reduction oxygen processing by reducing the amount of initial mass to
be processed. It is a required and enabling technology for oxygen production
using Magma electrolysis., SOA electrodes cannot accommodate the presence of

silicate material without extreme degradation.

5.3.3.2 Separation by Silicate
Separation experimentation is needed using magnetic/electrostatic tech-
niques coupled with sifting and/or other regolith refinement techniques to
separate out Al;03°Si0y from Anorthosite. This technology reduces the con-
sumables required to produce aluminum by approximately 60%. This technology
would allow processing of specific metals such as aluminum and enhance the per-

formance of the acid leach or vapor ion separation production techniques.
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5.3.3.3 Separation of Metal Oxides from Silicon Oxides
Potential silicate separation techniques must be identified to enhance pro-
duction efficiency (none uncovered to date). Experimentation of most valuable
concepts should be pursued on Lunar simulant and/or Apollo samples. This tech-
nology could reduce the consumable requirements in the Acid Leach process by

45%. Removing silicates would also reduce hardware corrosion rates.

5.3.4 Propellant Pocessing/Production Technology
5.3.4.1 Hydrogen Extraction

Identification and analysis of potential hydrogen extraction techniques
(such as RF/microwave, thermal release, and vibrational release) and experimen-
tation in the laboratory with Lunar regolith samples impacted with a hydrogen
plasma are required. This technology could reduce Earth launch mass from the
Lunar oxygen scenario by 30%. (A 65% reduction from the baseline scenario.)
This technology would enable a 100% Lunar-derived and Lunar-based H/0 OTV and

lander.

5.3.4.2 Consumable Recycling

The hydrogen reduction oxygen processing techniques recycle 90-95% of the
hydrogen through hydrogen release from Ti0/Fe0 power and electrolysis of Hy0.
Recycling of HF in the acid leach process requires not only recovery of H
through electrolysis, but also recovery of F from SiF; and AlF3. Additional
analysis should be given to these sub-processes to identify feasible improve-
ments, This technology could reduce consumable requirements approximately 507
thereby making the Acid Leach process competitive. This technology would enable
many processes including acid leaching as an economical aluminum and oxygen pro-

cessing.

5.3.4.3 Electrode Lifetime and Durability

There is a requirement to identify and categorize existing electrode
materials. Carbon graphite and platinum are seen as currently viable electrodes
but suffer from immense degradation from silicates and high temperatures.
Research should be conducted for longer-lasting electrodes more tolerable of the
molten slag content. Electrodes material could also be derived from Lunar
resources (although with degraded performance) to still potentially reduce the
Earth-support requirements. This technology could reduce consumable require-

ments of the molten electrolysis oxygen production by 50%. This 1is near-
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enabling technology for the magma electrolysis for oxygen to reduce the

replacement requirements of electrode resupply.

5.3.4.4 Plasma Processing
Not much is known to date on this process. Key technologies include plasma
sustenance, plasma flow and ion separation. An initial analysis of the feasibi-
lity should be done as Phase 1 followed by a conceptual definition in Phase 2
and finally some experimental work in Phase 3. This technology could reduce
consumables to near-negligible fractions (e.g. 5 g of production material per

metric ton of 0y produced).

5.3.4.5 High Temperature Materials Processing

Key development areas include the container of the molten material, valves
and piping, and heater elements. Lunar materials may be produced into refactory
linings such as Mg0. Constant temperatures must be maintained to avoid burn-
through or build-up in valves and piping. Heater concepts should avoid direct
contact with magma to avoid degradation. All three areas require further analy-
sis to determine a feasible Lunar technique. If this technology is not deve-
loped, then maintenance on high temperature processing facilities could double
the equipment requirements estimated. This technology enhances high temperature
processing to increase productivity of magma electrolysis and other high-

temperature processing techniques, and reduce maintenance problems.

5.3.4.6 Synergistic Processing

Identification of total LSB materials and potential areas of multiple
resource processing and processing techniques is required. There is a require-
ment to refine the processes with concentration on separation of specific raw
materials from the output materials and actual performance efficiency estimates
in most feasible processes. If synergistic processing is practical, the cost of
producing propellant could be spread among the entire Lunar base and may, in
some cases, be a nearly-free biproduct from another process. This would enhance

the overall raw materials availability in support of the total Lunar base.

5.3.5 Propellant Storage/Delivery Technology
5.3.5.1 Long-Term Storage
Another important issue is the identification of effects of Lunar storage,
permanent shadow storage, and recycling techniques to reduce boil-off and energy

requirements for cryogens. Also storage requirements and concepts for mixed
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hybrids aﬁd powdered fuels need to be identified. This technology could save on
the order of 10%Z of the propellant stored on the Moon. This technology would

enhance storage efficiency by reducing boil-off of cryogens and hybrids.

5.3.5.2 Cryogenic Cool-Down
Assessing the potential of magnetic refrigerators, hybrid magnetic/gas-
cycle refrigerators and other potential cryogenic cooling techniques for oxygen,
LHy and possibly solid 0j should be investigated. If economic feasibility is
evident, experimentation should be pursued. A significant reduction of power
consumption and equipment mass over current gas cycle refrigerators could be
achieved. This technology is enhancing and would decrease energv and equipment

consumable requirements,

5.4 Technology Plan

Consistent with the outcome of Subsection 5.2 and using the results of
Subsection 5.3 a preliminary technology plan was defined: see Figure 5-5 (a-d).
The plan covers a three-year time span and includes both studies and specific
technology development activities, Bolded items refer to technology develop-

ments of the recommended propulsion and propellant supply systems.

The first item in the plan is a two-year effort to upgrade the mission
model and conduct various analyses and tradeoffs to enable proper system selec-
tions. Vehicle/propulsion systems analyses should include: combustion analysis,
propellant characterization, cooling analysis, sizing, lifetime/durability
assessment, operations, technology, and costs, The scope of these analyses
should include hydrogen-oxygen, silane-oxygen, and aluminum-hydrogen-oxygen che-
micalfsystems, as well as electric, nuclear, EML and other systems. In addi-
tion, propulsion assist mechanisms (e.g. aerobrake and tether systems) need to

be further explored.

Propellant processing analyses are needed to determine feasibility and
assess efficiencies for all propellants being considered, The analyses must
address acquisition, preprocessing/beneficiation, processing/production and

storage/transfer,

Finally, an extensive series of propulsion system experiments needs to be
conducted to determine which systems can provide needed performance and opera-

tional characteristics. The combustion of solid aluminum in oxygen, liguid alu-
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minum in oxygen and silane in oxygen needs to be tested to establish performance

and operational characteristics. Feed mechanisms are a significant concern and

need to be tested and evaluated.

This plan is ambitious and will require a sizable investment of WNASA
It is based on a three-year schedule that can support a transpor-

Changes in the I0C date would allow

resources.
tation system IOC about the year 2000.

corresponding changes in the technology plan.
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APPENDIX B

PROPELLANT PROCESSING
RESQURCE AND EQUIPMENT WEIGHT

ESTIMATES
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B.O
The following calculations have been derived to obtain a fair comparison of

the propellant processing candidates reviewed in this study. Values for energy
and hardware requirements may not reflect the actual values determined by
experimentation but can be used with other process values calculated in this

study for resource requirement comparisons.
B.l Solar Wind Gas Extraction

Lunar Regolith Requirement

Lunar regolith requirement is visually determined for a baseline production
of 10 MT 0y or 10 MT/month. Since 0y is not a direct product of Solar Wind Gas
Extraction, we will discuss its resource requirements using enough mare to
supply 10 MT 0y assuming 100% of all 0y in the mare is processed by some other

technique.

10 MT 0y x lg mare = 24.2 MT Mare
0.413g 09

Reactant Requirement

No reactants are required.

Products

The following chart lists concentrations of solar wind gases in the mare.

TABLE B.1-1 Solar Wind Gas Concentration in Lunar Regolith

Solar Wind Gas Concentration
(PPM,Wt)
Mare Highlands Basin Ejecta
H 54.8 56.0 76.5
He 28.5 6.0 8.0
He-3 0.01 0.002 0.003
N 95.4 98.0 121.0
Ne 2.75 1.0 2.0
Ar 0.8 1.2 1.0

For extracting these gases from the mare, we will assume 100% efficiency
though actual efficiency may be closer to 50%. The following table shows pro-

duction potential for each solar wind gas. The values for processing 24.2 MT

Mare (containing 10 MT 0j).
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TABLE B.1-2 Solar Wind Gas Production

Solar Wind Gas Potential Production B-3
(g) Potentials
Mare
H 1325
He 690
He-3 0.24
N 2310
Ne 67
Ar 19

Resource and Equipment Weight Estimates

All resource and equipment weight estimates are based on production of 10
MT Uy or 10 MT 0/month. All estimates do not include beneficiation of power

source hardware weights.
B.l Solar Wind Gas Extraction

B.2 Hydrogen Reduction

Lunar Regolith Requirement

Assuming 100% of all 0y from Fe0 can be extracted from ilmenite, from lg

ilmenite:

0.449gFe0 x 1 mole Fe0 x 1 mole 09 x 32.2g09
71.8g Fel 2molesFe0 lmole0y

= 0.10068g 0;

The ilmenite required for 10 MT 02 production is-

99,325 Kg Ilmenite
99.3 MT Ilmenite

lg Ilmenite x 10 MT 09
0.10068g0,

The mare required to obtain 99.3 MT ilmenite, assuming ilmenite comprises

15wt%Z of the mare, is:

99.3 MT Ilmenite x lg mare = 662.2 MT Mare
0.15g Ilmenite

Reactant Requirement

Hydrogen gas is the only required reactant. Though Hp initially must be
imported from Earth, there is good potential for extracting it from lunar rego-

lith. The reduction reaction is:
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B-4 Fe0:-Ti0p + Hy = Fe + Hp0 + TiOy
The hydrogen required is determined by stoichiometry:

10 MT 02 x 1 mole 0y x 2 moles Hp0 x 1 mole Hy x 2gHp
32.2g0, 1 mole 09 1 moleH,0 ImoleHy
= 311Kg Hp = 0.31 MT Hy

Reactant Recovery Potential

It can be assumed that 95% of all Hy used may be recovered. It is reco-
vered from two different places. It is a product of the H90 electrolysis which
produces 0y. The Hp interstitially trapped in the melt may be released during

heat of microwaves. The amount of Hy recoverable is:

311 Kg H2 x 0.95 = 295 Kg Hp = 0,30 MT Hjp
Energy Requirement

1. Thermal

The thermal power required is determined from the thermodynamics of

the hydrogen reduction reaction:

42 ,0KJ x 1 mole Ilmenite x 99.3 MT Ilmenite
1 mole Ilmenite 151.7g Ilmenite
= 7,639 KWhrs

2. Electrical

The electrical power required is determined by the dissociation free

energy of Hp0 = 249 KJ/mole Hy0. Using stoichiometry:

249 KJ -> 4.32 KWhrs x 10 MT 09 = 43,200 KWhrs
lmole H90 1Kg 05

Equipment Weights

Since water vapor can continuously be captured, we will assume a continuous
automated process. We will also assume a chamber volume of 0.5m3, wall
thickness of 4cm and material demnsity of 7500Kg/m3.

4/3 t4 r3 =0.5m3, r = 0.49n

Reduction vessel weight = 7500Kg (4/3 tr (0.533 - 0.493))
3
m

= 981 Kg = 0.98 MT
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The weight of the elecrolysis hardware is determined using the NASA

Technology Model Volume 1, Part B. The equation used to determine Hy0 electro-

lysis hardware weight is:

150 x + 350, where x = man-days of oxygen consumption
1000

From the Technology Model, we know that 17.3 lbs 0j/day is consumed for 8
people. This number can also be expressed as 0.98Kg Oy/man-day. Production of

10 MT 09 is equivalent to:

10 MT 09 x 1 man-day = 10,204 man-days
0.98Kg0,y

Using the equation for electrolysis hardware weight, we have:

150 (10,204 man-days) + 350 = 18801bs = 854Kg = 0.85MT
1000

Total required equipment weight is:
0.98 MT + 0.85 MT = 1.83 MT

B.3 Magma Electrolysis
Lunar Regolith Requirement

Assuming 50% of all 0y from Fe0 can be extracted from ilmenite, from lg

ilmenite:

0.449gFe0 x lmoleFe0 x 1lmole0p x 32.2g0p x 0.50 = 0.0503g09
71.8gFe0 2molesFe0 lmole0,y

The ilmenite required for 10 MT 0y production is:

lg Ilmenite x 10 MT 03 = 198,807Kg Ilmenite = 199 MT Ilmenite
0.0503g05

The mare required to obtain 199 MT Ilmenite, assuming ilmenite comprises

15wt% at the mare, is:

199 MT Ilmenite x lg mare = 1325 MT Mare
0.15g Ilmenite
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Reactant Requirement

If no fluxes are used, no reactants are required.

Energy Requirement
1. Thermal

The thermal energy required is determined using Mcp T and the
thermodynamic properties of ilmenite,

130 J/mole K

[}

Cp of Ilmenite

Process Temperature = 1350°C = 1623 X

Initial Temperature = 25°C = 298K

Moles of Ilmenite = 198,807Kg x 1 mole
0.151 Kg

= 1,310,527 moles
62,705 KWhrs

(1,310,527) (130) (1623-298)

2. Electrical
Using the dissociation energy of Fe0 and assuming 507 of Fe0 electro-

lyzed:

269 KJ x lmoleFe0 x 89,264,343gFe0 x 0.5 = 46,449 KWhrs
mole Fe0 71.8gFe0

Equipment Weights

Assuming a chamber vol of 1.5m3 and a continuous automated process, wall

thickness of 2cm and material density of 7500Kg/m3:
4/3 3 =1.503, r = 0.7lm

Electrolysis Cell Weight = 7500Kg (4/3 (0.733 - 0.713))
3
m

= 981Kg = 0.98 MT
Electrode corrosion rate using graphite electrodes is observed in
terrestrial industry as 7Kg/day. This number reflects the electrode corrosion

problem of this process but is very conservative. An optimum material may be

found to reduce this rate substantially.
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B.4 Carbochlorination
Carbochlorination resource and equipment weights have been determined in
two ways: |
I Production of 0y
II Production of Al and 0
Calculations for the production of Al include the production of 10 MT 0,.

I. Production of 0,

Lunar Regolith Requirement

From stoichiometry and the composition of the mare regolith:

4.76g Anorthite x 10 MT 0 = 47.6 MT Anorthite

1g05

The mare regolith to obtain 47.6 MT anorthite, assuming anorthite comprises

20wt% of the mare, is:

47.6 MT Anorthite x lg mare = 238 MT Mare

0.2g Anorthite

Reactant Requirement

The carbon required is determined by the stoichrometry of the carboch-

lorination reactions. To process lg anorthite:

0.337gAl17503 x lImoleAly03 x 3moleC x 12.0gC = 0.1189gC
102.0gAl504 1moleAl,03 lmoleC
0.181gCa0 x 1lmoleCal x 1lmoleC x 12.0gC = 0.0388gC )
56 .0gCa0 lmoleCal lmoleC
0.461gSi07 x 1lmoleSi0y =x 2molesC x 12.0gC = 0.1844gC
60.0g8i09 lmoleSi0o ImoleC

0.1189 + 0.0388 + 0.1844 = 0.342gC
lgAnorthite

Since 47.6 anorthite is required for production of 10 MT 0j:
47.6 MT Anorthite x 0.342gC = 16,279KgC = 16.3 MT C
lgAnorthite
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The cholorine required is determined using stoichiometry and the com-

position of anorthite:

11.3gCly x 1gAl x 10 MT 0p = 95.8 MTCl,
1gAl 1.18g0,

Reactant Recovery Potential

Assume of al Clgp from CaCly is recovered. From lg anorthite:
0.181gCa0 x 1lmoleCal x lmoleCaCly; x 1ImoleCly x 70.9gCly = 0.229gCl)
56 .0gCal lmoleCal ImoleCaCl,y lmoleClo

Assuming 50% of all Cl, from SiCl, is recovered, from lg anorthite:
0.461g5i07 x lmoleSi0y x lmoleSicly, x 2molesCly; x 70.9gCl)
60.0gSi0y 1lmoleSiOjp lmoleSiCly;  lmoleCly
= 1.090gCl,y
1.0900gCly x (0.50) = 0.545gCl)

Total Cly recovered from processing lg anorthite:
0.229 + 0.545 = 0.774gCly
lgAnorthite

To produce 10 MT 09, 47.6 MT Anorthite are required:
0.774gCl,y x 47.6 MT Anorthite = 36.8 MT Clj
1gAnorthite

Assume 100% of all C from CO produced in the carbochlorination unit is

recovered. Total CO produced from processing lg anorthite is:

0.337gA1203 x 1moleAly03 x 3molesCO = 0.0099 moles CO
102.0gAl1,03 ImoleAl)03
0.181gCa0 x 1moleCa0 x 1lmoleCO = 0.00323 moles CO
56 .0gCa0l lmoleCal
0.461g5i09 x 1moleSi0p x 2molesCO = 0.0154 moles CO
60.0g5109 Imole8i09p
0.0099 + 0.00323 + 0.1054 = 0.0285 moles CO

lg Anorthite
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For 10 MT 0y production, 47.6 MT anorthite are required:

0.0285 molesCO x 47.6 MT Anorthite
lg Anorthite

625,000 moles CO

1,356,600 moles CO x lmoleC x 12.0gC
1moleCO ImoleC

16,279KgC = 16.3 MTC

Energy Requirement
1. Thermal

For carbochlorination reactions and production of 10 MT 0, using

stoichiometry and thermodynamics:

50KJ x lmoleAnorthite x 47.6 MT Anorthite = 2,380KWHrs

lmoleAnorthite 278gAnorthite

Since 0y is recovered from Al,03 and Ca0, only 0.0099 + 0.00323 moles

of CO are processed.

0.0099 + 0.00323 = 0.01313 moles CO/lg Anorthite
0.01313 moles CO x 47.6 MT Anorthite = 625,000 moles CO
lg Anorthite

For heating of CO to convert to COj:

280KJ  x 625,000 moles CO = 48,611 kWhrs
lmoleCO

For heating COj5 in Bosch Reactor:

180KJ x 1ImoleCO; x 625,000 mole CO = 18,750 kWhrs
moleCOo lmole CO

Total thermal for processing:

2,380 + 48,611 + 18,750 = 69,741 kWhrs
Total Thermal = 15,504 + 69,741 = 82,245 kWhrs

For reclamation of Cly from CaCly, CaCly must be heated to 1000°C.

Using stoichiometry and thermodynamics:
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B-10 785KJ x lmoleCaCly, x 1moleCa0 x 56gCa0 x 2,844,000gCa

moleCaCl,y lmoleCal 56.0gCal 40gCA
= 15,504 KWhrs '

2. Electrical
Electrical power is directly used for electrolysis of Hy0. From

dissociation energy of Hy0:

4.32 KWhs x 10 MT 0, = 43,200 kWhrs
kgl

Equipment Weights

Weight of the carbochlorination unit is based on a mass flow rate of
60kg/hr, 4cm wall thickness and material density of 7500kg/m3.
' 600kg --> 0.6MT

Weights for the condensers was obtained from Strobridge's '"Cryogenic
Refrigerators ~ An Updated Study" and is based on a 90Z duty cycle and
250 MT/yr 0y production.

10 MT

Bosch reactor weight is obtained from Quattrone's "Extended Mission
Life Support Systems".
1.0 MT

The H0 electroylsis hardware weight is calculated using the equation

from the NASA Technology model:

150 x +350 where x = man—-days of 05 consumption

1000

Production of 10 MT 02 is equivalent to 10,204 man-days of 0

consumption. Weight of the Hy0 electrolysis cell is estimated as:
0.85 MT

Total Equipment weight = 12.45 MT

I1. Production of Al and 09
Lunar Regolith Requirement

The production of Al includes production of 10 MT 0. The lunar regolith

requirements are the same as in part I.
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238 MT Mare
47 .6 MT Anorthite

Products

From stoichiometry:

5.6 kg Anorthite -> lkg Al
For production of 10 MT 05, 47.6 MT Anorthite is required.

1 kg Al X 47.6 MT Anorthite = 8,500 KgAl = 8.5 MT Al

5.6kgAnorthite

Total products obtained are:
10 MT 0,
8.5 MT Al

Reactant Requirements

Reactant requirements are the same as in part T.
95.8 MT Clo
16.3 MT C

Reactant Recovery Potential

Carbon is recovered in the same manner as in part I.

16 .3 MT C

Chlorine recovered from CaCly and SiCly, remains the same as in part I.

36.8 MT Cloy
Additional Cly may be recovered from AlClj:

0.3373A1203 x 1lmoleAl03 x 2molesAlCly x 1l.5molesClp x 70.9gCljp

lgAnorthite 102gA1,503 ImoleAly04 ImolesAlCly  1moleCly
= 0.7027gCl,/gAnorthite

0.7027gCly x 47.6 MT Anorthite = 33.4 MT Clj

gAnorthite
Total Cljy recovered: 70.2 MT Cljp

Energy Requirement

1. Thermal
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Thermal energy to obtain 10 MT Oy remains the same as in part I,

B-12 82,245 kWhrs

Additional thermal energy to obtain Al is determined using

stoichiometry and thermodynamics:

36.4KJ x 3,929,000gA1 x 1moleAl = 1,471kWhrs
moleAl 27 .0gAl
Total Thermal Energy = 82,245 + 1,471 = 83,716 kWhrs

2. Electrical
Electrical energy to obtain 19 MT 09 remains the same as in part 1.

43,200 kWhrs

Additional electrical energy to obtain Al is determined using

9kWhr/kgAl which is the electrical energy per kg Al used by Alcoa.

9kWhr x 3,929 kgAl = 35,361lkWhrs
KgAl

Total Electrical Energy = 43,200 + 35,361 = 78,561kWhrs

Equipment Weights
From part I: 12.45 MT

Additional equipment weight for Al production comes from the Al electrolv-

sis hardware. The estimate is based on cell volumes of 0.5m3, 4em wall

thickness and material density of 7500Kg/m3.

975Kg -> 0.975 MT
Total Equipment Weight = 13.4 MT

B.5 Acid Leach

Acid Leach resource and equipment weights have been determined two ways:
I. Production of 09
I1. Production of Al and 0,
I11. Production of Al, Mg and 03

Calculations for the production of Al include the production of 10 MT 35 or

10 MT 0y/month.
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1. Production of 0y , | B-13

Lunar Regolith Requirement

To obtain only 05, unbeneficiated mare is leached with HF. Calculations
assume all 0, comes from processing Hp0. The mare required for 10 MT 0y pro~
duction is:

lg mare  x 10 MT 0y = 23.6 MT Mare
0.424g05

Reactant Requirement

HF is the only required reactant for 0j production only. Using
stoichiometry and the composition of mare regolith:
1.09gHF x 23.6 MT Mare = 27.5 MT HF
lg Mare

Recovery Potential

After the leach reactions, only Hy0 is processed to produce 09 only. No HF

is recovered without some processing of other leach reaction products.,

Energy Requirement

1, Thermal
From stoichiometry and the thermodynamics of pre-heating mare regolith

to leach process temperature:
0.00267 kWhrs required per g 0j
G.00267kWhrs x 10 MT 0o = 26,663 kWhrs

g 0o

2. Electrical

Using the dissociation of H90 to determine electrical power for H30

electrolysis:
4.32kWhr x 10 MT = 43,200 kWhrs

Kg0s

Equipment Weights
The estimate of all reagent containers required is scaled to process 4.2 MT

lunar regolith per hour and is estimated from Criswell's "Extraterrestrial
Materials Processing”. For 0y production only, it is estimated that onlv 10% of

all reagent containers are required.

20 MT x 0.10 = 2.0 MT
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The Hy0 electrolysis hardware is estimated using the NASA Technology
Model's equation:

150 x +350 where X = man—days‘of 05 consumption

1000
It is stated that 8 people consume 17.31bs 0j/day:

17.31bs0, = (.98 Kg/man-day
day/8men

Production of 10 MT 0, is equivalent to:

10 MT 05 x lman-day = 10,204 man-days
0.98Kg

Using the Hy electrolysis weight equation, for 10 MT 0o
Ho0 Electrolysis Weight = 0.85 MT

Total Equipment Weight = 2.0 + 0.85 = 2.85 MT

II. Production of Al and 05
Lunar Regolith Requirement

Mare regolith is first beneficiated to isolate the aluminum silicate,

Al703°8i0y. From the stoichiometry of the leach reactions and composition of

mare:

10 MT 97 x lmole0; x 1lmoleAl;03°8i0p x 162gAly03°Si05
32.0g0» 2.5mo0le09 1moleAl03°Si0y
= 20,3 MT Al1703°:Si0y

20.3 MT Al503°8Si0)p x lgmare = 87.3 MT Mare
0.232gA1,704°Si0y

Products

Froh lunar mare composition: 87.3 MT Mare x 0,068 = 5,9 MT Al

Total Products are: 10 MT 0
5.9 MT Al
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Reactant Requirement

The amount of HF required is determined by stoichiometry:

10 MT 0y x lmole0y x llmolesHF x 20gHF = 27.5 MT HF
32.0g09 2.5moles0Oy lmoleHF

To determine the amount of NaOH required, stoichiometry is used.

stoichiometry:
69gNa is required per 27gAl
5.9 MT A1 x 69gNa x 40gNaOH = 26.2 MT NaOH

27gAl 23gNa

Reactant Recovery Potential

All F ions from AlF3 will be recycled to form HF:

5.6 MT Al x lmoleAl x 3molesF x 19gF = 11.8 MT F
27gAl 1moleAl lmoleF
11.8 MT F x ]lmoleF x 1lmoleH x lgH = 0.6 MT H

19gF lmoleF lmoleH

Total HF recovered = 12.4 MT HF
All NaQOH is recycled.

Energy Requirements

1. Thermal

From the leach reactions using stoichiometry and thermodynamics for

beneficiated mare:

From

2855KJ x lmoleAl;03-Si0s x 20,300,000g Aly03-Si0y

moleAl)03-8i07 162.0gA1903°Si09
99,376 kWhrs

From AlF3 reduction using stoichiometry and thermodynamics:

18.6KJ x 5.9 MT Al = 30,483 kWhrs
gAl
Total Thermal = 99,376 + 30,483 = 129,860 kWhrs
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2. Electrical

From Hy0 electrolysis using dissociation energy of H30:

4.32kWhrs x 10 MT 0o = 43,200 kWhrs
Kg 0y

From processing of NaOH using dissociation energy of NaOH:

100.64Kcal x 0.00116222kWhrs x ImoleNaOH x 26.2 MT NaOH
moleNaOH Kcal 40gNaOH

= 76,613 kWhrs

Total Electrical = 43,200 + 76,613 = 119,813 kWhrs

Equipment Weights
The estimate of all reagent containers required is scaled to produce 1110MT

Og/yr and is estimated from Criswell's "Extraterrestrial Materials Processing".
Also, weights of the condensers required are included here. For Al and 0y pro-
duction, it is estimated that only 45% of all reagent containers are required.

20 MT x 0.45 = 9.0 MT

The weight of water electrolysis hardware is the same as in part I.

0.85 MT

To determine the weight of the Castner Electrolysis Cell an equivalence

factor is used. The factor represents the ratio of atomic weights of NaOH and

Hp0. The equivalence factor for Castner electrolysis is 2.22. The equivalence

factor is used to derive an equation for Castner Cell weight from the H0
electrolysis equation in the NASA Technology Model., The weight of the Castner
Cell is estimated to be:
1.88 MT
Total Equipment Weight = 9.0 + 1.88 + 0.85 = 11.73 MT

III, Production of Al, Mg and 0)

Lunar Regolith Requirement
Mare regolith is beneficiated to isolate aluminum and magnesium silicates,

Al703°5i0p and Mg0+Si0j. From the stoichiometry of the leach reactions and com-

position of mare:
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Asgsume lg mare: B-17
0.232g Al503°-8i0,
0.161g Mg0-Si0,y

0.232gA1,03°5i07 x lmoleAlj03-Si0y x 2.5moles0y x 32.0g09
162.0gA1504°51i09 lmoleAl903°Si0» 1Imole0y
= 0.115g0,

0.161gMg0-5i0p x 1lmoleMg0-Si0p x 1.5moles02 x 32.0g09
100.3gMg0-5i09 lmoleMg0-Si09 lmole0)y
= 0.077g0,

After leaching, Mg0-:Si0y appears as MgFy°SiF,. Once MgFj is removed from .
MgF°SiF;, it must be converted back to Mg0 before further reduction. Oxygen

from Mgd is not recovered.

O.l61gMg0'Si02 X 1moleMg0+Si0s x lmoleMg0 = 0.001605moles Mg0
100.3gMg0°Si09 lmoleMg0-S5i09
0.001605molesMgld x lmole0y x 32.0g0o = 0.0257g Oj

2molesMgd lmole0y
02 obtainable from Mg0°-Si0; = 0.077 - 0.02257 = 0.051g0;
Total 0 recovered from lg mare = 0.115 + 0.051 = 0.166g 03

For 10 MT 0, production:

10 MT 0j x lgmare = 60.2 MT Mare
0.166g07
Products

From 60.2 MT Mare:
60.2 MT Mare (0.232gAl703°5Si0p/gmare)

14.0 MT A1,03°Si0,

60.2 MT Mare (0.161gMg0-Si0y/gmare) 9.7 MT Mg0-Si09

14.0 MT Al1703°5i03 x lmole Al303°Si0 x _ 2molesAl x 27.0gAl
162.0gA17043°5i09 1moleAl903°Si09 1lmoleAl
= 4.7 MT Al
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B-18 9.7 MT Mg0-Si0p x ImoleMg0:Si0p x lmoleMg x 24,.3gMg
100.3gMg0°S10, ImoleMg0+Si0y ImoleMg
= 2.35 MT Mg
Total Products are: 10 MT 0,
4,7 MT Al
2.35 MT Mg

Reactant Requirement

From 60.2 MT Mare:

14.0 MT Al1703°Si09
9.7 MT Mg0-5i0,

14.0 MT A1703°5i07 x 1moleAl203°Si0p x llmolesHF x 20.0gHF
162.0gA1703°8i09 lmoleAl903°8i09 ImoleHF
= 19.0 MT HF
9.7 MT Mg0-Si0p x 1lmoleMg0-8i0 x 6molesHF x 20.0gHF
100.3gMg0+Si0, 1moleMg0+S5i0y lmoleHF
= 11.6 MT HF

Total HF required = 19.0 + 11.6 = 30.6 MT HF

Stoichiometry is used to determine the amount of NaOH needed:

69gNa is required per 27gAl

4.1 MT A1 x 69gNa x 40gNaOH = 18.2 MT NaOH
27gAl 23gNa

Magnesium oxide is reduced by silicon and calcium oxide. Si and Ca0

requirements are as follows:

9.7 MT Mg0-Si07 x 1moleMg0-Si0; x _lmoleMg0 x 40.3gMg0
100.3gMg0-8105 lmoleMg0+8i0y ImoleMgO

= 3.9 MT Mgo0
3.9 MT Mg0 x lmoleMg0 x lmoleSi x 28.0gSi = 1,35 MT Si
40.3gMg0 2molesMg0 1moleSi

AsStronautiCs CORPORATION OF AMERICA — TECHNOLOGY CENTER



3.9 MT Mg0 «x lmoleMg0 x 2molesCa0 x 56.0gCa0 = 5.42 MT Ca0

40, 3gMg0 2molesMg0 lmoleCal B-19

Total Reactant Requirement:
30.6 MT HF
18.2 MT NaOH
5.42 MT Ca0
1.35 MT Si

Reactant Recovery Potential

All NaOH is iecycled.

Due to processing inefficiencies, it is assumed that 90% of all Si and Ca0

and recycled.

5.42 MT Ca0 x (0.90) 4.88 MT Ca0 recoverable

1.35 MT Si  x (0.90)

1.22 MT Si recoverable

As in Part II, all F ions from AlF3 will be recycled to form HF.
HF recoverd from AlFq = 12.4 MT HF

All F ions from MgFy will be recycled to form HF:

2.35 MT Mg x lmoleMg x lmoleMgFy x 2molesHF x 20.0gHF = 3.9 MT HF
24 ,3gMg ImoleMg lmoleMgF,y lmoleHF

Total HF recoverable = 12.4 + 3.9 = 16.3 MT HF

Energy Requirements

1. Thermal

From the leach reactions using stoichiometry and thermodynamics for

beneficiated mare:

2855KJ x lmoleAlp03-Si0y x 14,000,000gA1,03°8i09
moleAls03°51i09 162.0gA1903°81i09
= 68,535 KWhrs

146KJ x lmoleMgd-Si0y x 9,700,000gMg0-Si09 = 3922KHrs
moleMgd-Si0p 100.3gMg0°510,
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From AlF3 reduction:
18.6KJ  x 4.7 MT Al = 24,283 KWhrs
gAl

B-20

From conversion of MgF,; to MgO:

at 1200°C -> 2.6 KJ/gMgFy converted

9.7 MT Mg0-Si0y x ImoleMg0-Si0p x ImoleMgFsy x 62.3gMgF)
100.3gMg0+8i0, ImoleMg0-Si0sy ImoleMgF9
= 6,025 MT MgF,

6,025,000gMgFy x 2.6KJ = 4,351 KWhrs
gMgFy

From silicon reduction of MgO:

at 1200°C -> 8.7 KJ/gMg produced

2.35 MT Mg x 8.7KJ = 5679 KWhrs
gmg

Total Thermal Energy required = 68,535 + 3922 + 24,283 + 4351 + 5679 =
106,770 KWhrs

2. Electrical
From Hp0 electrolysis:
4.32KWhrs x 10 MT 09 = 43,200 KWhrs
Kg0s

From processing at NaOH:
0.11697KWhrs x lmoleNaOH x 18.2 MT NaOH = 53,219 KWhrs

moleNaOH 40gNaOH
Total Electrical = 43,200 + 53,219 = 96,419 KWhrs

Equipment Weights

Equipment weights are determined in the same manner as in Part II. Weights
of water electrolysis and Castner Cell subsystems remains same.
Water electrolysis = 0.85 MT
Castner Cell = 1.88 MT
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B-21
Scaling Criswell's results for HF leach in "Extraterrestrial Materials

Processing' and assuming 66% of all hardware will be required for 0;, Al and Mg

production:
20 MT x 0.66 = 13.2 MT

Total Equipment Weight = 0.85 + 1,88 + 13,2 = 15.93

B.6 Vapor-Ion Separation

Lunar Regolith Requirement

Theoretically, 100% of any element in the lunar regolith can be extracted
using Vapor-Ion techniques. Using composition of the mare regolith, to produce
10 MT 05:

10 MT 0 x 1lg Mare = 24,2 MT Mare
0.413g0,

Reactant Requirement

No consumed reactants are required. If vaporization is achieved using

plasma, Argon or another inert gas will be required to maintain the plasma.

Energy Equipment
The following table summarizes energy requirements for the various separa-

tion methods used for vapor-ion separation:

Separation Energy Requirement
Mecthod Products (KWhr/MT Product)
Distillation Al, Mg, Fe, 09 34,000
Electrostatic Al, Mg, Fe 62,000
Al, Mg, Fe, Oy 44,000
Electromagnetic Al, Mg, Fe 72,000
Al, Mg, Fe, 0y 96,000

*Values are from Steur's Extraterrestrial Materials Processing Equipment

Weights

Since this process is in the development stage, no accurate calculations of

hardware required and hardware weights are available.

B.7 Carbothermal Process

Lunar Regolith Requirement

From lg mare regolith:
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0.161gMg0+Si0y; x 1lmoleMg0-Si0p x 2moles CO = 0.0032/molesCO
100.3gMg0-5i0y 1moleMg0-Si0y

B~22

0.161gMg0-Si0p x 1lmoleMg0-Si0y x  4molesHjp = (0.00642molesH,y
100.3gMg0-Si0, 1lmoleMg0-Si0,

Since the desired molar ratio of Hy to CO is 3, Hp is the limiting
reagent. Using stoichiometry (see Eqs. 24-27 of Tble F.9) and assuming 100% of
all 0 from Hp0 is obtained:

0.00642molesHy x 2molesH20 x 1mole0y x 32.0g0p = 0.0342g07
6molesH,y 2molesH50 lmole09

For 10 MT 0j:

10,000,000g09 x lg mare = 292.4 MT Mare
0.0342g0,
292.4 MT Mare x 0.161gMg0-Si0,y = 47.1 MT Mg0°Si0y
l1gMare
Products
47.1 MT Mg0°Si0y x lmoleMg0+Si0p x lmoleSi x 28.0gSi
100.3gMg0-5109 lmoleMg0-Si0y lmoleSi
= 13.1 MT Si

If 10 MT 0y are obtained:
10 MT 02 x lmole0p x 2molesHy; x  2gHp = 1.25 MT Hy
32.0g09 lmole09 lmoleH)y

1.25 MT Hy x lmoleHy x lmoleSiH4 x 32.0gSiH4 = 10.0 MT SiH,

2.0gHy 2molesHy 1lmoleSiHy,
10.0 MT SiH4; x lmoleSiH;, x _lmoleSi x 28.0gSi = 8.75 MT Si
32.0gSiHy ImoleSiHy, lmoleSi

13.1 MT Si - 8.75 MT Si = 4.35 MT Si

Total Products are:
10 MT 0y
10.0 MT SiH,
4.35 MT Si
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Reactant Requirement

Methane is the only required reactant. All requifed CO, Hp, and H)0 are
obtained as a result of methane reduction of Mg0-Si0j. The methane required to
obtain 10 MT 05 is:

47.1 MT Mg0-8i0; x lmoleMg0-Si0; x 2molesCHy X 16gCH,,
100.3gMg0-Si0y  lmoleMg0-Si0s ImoleCHy
= 15.0 MT CHy

Reactant Recovery Potential

Assume 1gCHy, used to process Mg0-Si0j:

lg CH4, x ImoleCHy x 4molesHy = 0.125 moles Hjp
16gCHy, 2molesCHy
0.125 moles Hyp x 2molesCH; x 1l6gCHy = 0.667g CHy
6molesH) LmoleCH,,
Recovery potential = 0.667g = 66.7%
1.0g

The amount of methane recovered from manufacture of 10 MT 0j:

15.0 MT CHy4 (0.667) = 10 MT CHy recovered

Energy Requirement

1. Thermal

From methane reduction of Mg0+5i0,:

742KJ x 47.1 MT Mg0°Si0s x lImoleMg0+Si0; = 96,738 KWhrs
moleMg0-Si0y 100.3gMg0-5i0,

From reaction of CO with Hj:

# Moles CO = 0.00642molesHy x 2molesCO x 292.4 MT Mare

lg mare 6molesHs
= 625,731 moles CO

412.6KJ X 625,731 moles CO = 71,715 KWhrs

moleCO
Total Thermal = 96,738 + 71,715 = 168,453 KWhrs
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2. Electrical
Using the dissociation energy of Ho0 for electrical requirement for

HoO0 electrolysis:

4.32 KWhr x 10 MT 0, = 43,200 KWhrs
Kg0qy
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ELES-1984:

C.

P.0. Box 13222
Sacramento, Califaornia

Abstract

The ELES-1984 computer code is a landmark
development {n the preliminary systems analysis of
liquid rocket vehicles. 1t is capable of
revealfng subsystem i{nteractions and design choice
impacts on total vehicle performance. 1Its use
enables very rapid determination of optimum
vehicle designs.

Overview

The 1iquid propulsion system models in ELES
have been developed by Aerojet TechSystems Company
under the auspices of AFRPL during the past few

years {1980-1984} under contracts FO4611-79-C-0054

and F04611-82-C-0062. The main purpose of ELES is
to find optimum vehicle designs for specified
missfon requirements. Toward that end it is
capable of evaluating the size, weight, and per-
formance of system components over a range of
design configurations, materials of construction,
and operating points.

ELES

INITIALL2E

- —

STAGE OESIGN

E.
Aerojet TechSystems Company

Taylor

A THIRD GENERATION PRELIMINARY OESIGN TOOL

95813

There are three main sections of the ELES

computer code {see Fig. 1):

a stage design sec-

tion, a trajectory model, and a multivariable

optimizer,

The stage design section calculates

the size, weight and engine performance of liquid

or solid stages {see Fig. 2).

The trajectory

model uses a 20 round non-rotating earth, 1962
standard atmospheric data, Adams-Moulton/Runge-
Xutta integration, and Kepler orbital mechanics.
The optimizer provides optima for both stage
design and vehicle guidance with design and

guidance parameter sensitivites included.

Mixed

solid and 1iquid stage vehicles of up to 4 stages

can be modeled by ELES.

The liquid engine feed system power cycles

modeled by ELES are illustrated in Fig. 3,

The

1ist includes pressure fed engines and pump fed
engines with the following turbopump power

cycles:

gas generator bleed, single preburner

staged combustfon, staged reaction, and

SOLID STAGE

TRAJECTORY

]

GPTIMIZER

ouTPUT
RESULTS

Fig. 1

LIQUID STAGE

]

ELES flow diagram
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C-4

Propellant Tank Size/Weignt
Pressurization Tank Size/Weight

Line Size/Weight

Positive E«pulsion Size/Weignt/Celita P

Engine Size/Weight/Performance (Nozzle, Valve,
{njector, Chamber)

Thrust Mount Size/Weight

Gimbal System Size/Weight

Tank Residuals Weight

Tank Pressurization Requirements
Interstage Size/Weight

Delivered Specific I[mpulse (ideal one dimensfional
equilibrium performance degraded by kinetic,
vaporization, boundary layer, mixing, two phase,
divergence, and MR distribution losses)

feed System Temperature/Pressure/Flowrate
Schedules

Regenerative/Trans-Regen Cooling Requirements
Turbopump Assembly Size/Weight/Performance
Turbopump Design Parameter B8reakdown
Regenerative Cooling Jacket Summary

Required Engine Barrier Mixture Ratio

Stage Tank Mixture Ratlo

Fig. 2 Major Output Parameters of Liquid Stage
Design Section

expander. The ELES engine analysis outputs engine
size, weight, and performance, as well as turbo-
punp assembly (TPA) size, weight and performance.

Engine perfornnance is based on the standard
JANNAF method. [t begins with ideal one dimen-
sfonal equilibrium (0DE) performmance and degrades
that ideal performance with loss multipliers. The
calculation of these multipliers is performed by
standard JANNAF procedures or by Aerojet derived
methods. The analysis includes the effect of
{njector design, thrust chamber material, oper-
ating temperatures, propellant {nlet temperatures,
and thrust chamber geometry.

TPA design options are shown fn Fig. 3 as
gearbox, single shaft, and twin TPA. As required,
the code will stage the pumps and turbines. The
TPA {s desfgned by considering system power
requirements and drive fluid characteristics.

Pump and turbine efficiencies are based on
{ndustry standards (Ref. NASA SP-8109, Fig. 6;
AFRPL TR 72-45, Fig. 4).

The temperature and pressure drops across
regenerative or trans-regenerative cooling jackets
are calculated by creating a simplified thrust
chamber geometry with slotted channels for coolant
flow. Combustion gas and coolant heat transfer
coefficients are calculated at discrete points
along the chamber and are used to integrate the
pressure drop necessary to maintain the chamber
wall at nominal operating temperature. Transpira-
tion cooled portfons of the chamber are analyzed
using techniques developed by Aerojet TechSystems
for use with transpiration cooled re-entry vehicle
nosetips.

PRESSURE FED ENGINES

PUMP-FED ENGINES

GEARSOX

crae SINGLE PREBURN( '] '
Iy 6 sLEEo STAGED ConguST SN STAGED REACTION 0PTionae REGENERATOR |
" X ‘ ves!
r Y
i) T -
14

79 W

SINGLE
SHAFT

AR
. :
= J
-
-~
“
o
=~
—~
a

TN
TPAs
SERIES- -
DRIVE
FLUID
FLOW

TN 77N

Fig. 3 Representative ELES engine cycles
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A wide variety of tankage designs are avail-
able (see Fig. 4). Tandem tanks are designed by
choosing tank head orfentation, common or separate
tank heads, suspended or monocoque construction,
and pressurant tank location. The tanks may or
may not contain a positive expulsion bladder or
surface tension acquisition device. Non-conven-
tional tankage is designed by choosing the nunber
and type of propellant and pressurization tanks as
well as propellant acquisition design. Each tank
is {ndividually specified to be toroidal, spher-
fcal, or cylindrical with elliptical heads. Tanks
are located based on general location fnput and
physical interference between the tanks and
envelope,

Propellant tank pressurization options in ELES
fnclude cold gas, solid gas generator, and auto-
genous. W¥ith cryogenic propellants, the pres-
surant collapse is calculated with the Epstein*
correlation. Pressurization requirements are
affected by the vehicle operating temperature
regime, and external heating loads.

Throughout the 1iquid stage design portion of
the code there {s a need for propellant properties
data over an extremely wide range of temperature
and pressure. This data is stored in tables for
hydrogen and helium. The properties for all other
propellants are calculated by the method of
corresponding states. This allows analysis to
occur {n regimes where propellant data may not

exist and for propellants which have very little
experimental data.

Liquid‘Staqe Design Procedure

The general procedure used for calcylating the
size/weight/performance of Viquid stages is

described in Fig. S.

It begins with the initiali-

zation of propellant feed circuit parameters

{temperature, pressure, flowrate).

The renainder

of the procedure refines those initfal estimates.

Refinements to the feed schedules include
calculating the engine's barrier mixture ratio,
engine performance, regenerative cooling jacket
properties, turbopump assembly (TPA) design, pro-
pellant tank pressurization requirements, and

tankage heat transfer,
used for some of the parameters.

[terative procedures are

When the propellant feed schedules are
finalized, the calculations of size, weight, and
performance of the TPA, engine, and tankage can
A stage summary of those parameters
and related parameters can then be made. o

take place.

*Epstein, M. and Anderson, R, "An Equation for the
Prediction of Cryogenic Pressurant Requirements
for Axisymmetric Propellant Tanks,” Advances in
Cryogenic Engineering, Volume 13, New York
{1968), Page 207.

CONVENT IOMAL GEOMETRY

NON-CONVENT [ONAL TANKAGE 1V, TANOEM CSE

V. PARALLEL CSE
1. TANDEM CSE * 1. TANOEM TOROIOS 111, PARALLEL CSE AXD TOROID AKD TOROID
YR T NI CLRAY, :
SINGLE & MXTI-ENGINES LEREp%

A.l. SINGLE ENGINE

A.2,2,3,4, ANRWAR
PLUG-CLUSTER ENGIN

A aVATAYHIEY
d S/ ?L\g\c\

ALL ENGINE
GEQMETRIES
(SEE TAKK FLAGS)

C. N TANKS 8. FOUR TANKS
NE ENGINE 1. ONE ENGINE
* CYUINORICAL, SPHERICAL, ELLIPTICAL OKE ENGI 2

Al. ONE EMNGINE

Qe

A.2. PLUG CLUSTER,
ANNULAR, AND
2.3,4 ENGINES

TWO THROUGH FIVE ENGINFS

fig. 4 Representative ELES tankage options.

ALL ENGINES

EXCEPT SINGLE
DelAVAL ANO

ANNULAR

(INTEGRATED ANNULAR)
(ENGINE 1S OPTIONAL)
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1) Initialize temperature schedule
2) Calculate engine barrier mixture ratio

1) [nitialize flowrate schedule {(using some
rough estimates)

3.1)  Estimate tank sizes
3.1.1) Estimate tank heat transfer

3.1.2) Estimate pressurization
requirements

4) Calculate feed system pressure
schedule

4.1) Calculate engine performance

4.2) Perform regen cooling analysis
(if required)

5) Perform non-conventional nozzle
modifications

6) Calculate flowrate schedule (using improved
estimates)

6.1) Calculate tank sizes
6.1.1) Calculate tank heat transfer

6.1.2) Calculate pressurization
requirements

7) Design TPA (if required)
(iterate, if not power balanced)

8) Update propellant temperature schedule
(iterate on temperature schedule, if
required)

9) Calculate TPA size/weight (if required)
10) Calculate engine size/weight
11} Calculate tankage size/weight

12) Calculate stage summary size/weight/
performance

Fig. § Liquid Stage Oesign Procedure

ELES Input

ELES-1984 operates fn a "batch™ type mode
which weans that during program execution there is
no interaction between the user and the code.
After normal program terminatfon ELES will have
created output files which can be examined by the
user.

The main form of interaction between the user
and ELES takes place prior to program executfon
when the user creates an fnput file. This {nput
file is submitted to ELES at run time. The {nput
file (named "ELESINP") contatns up to 34 NAMELIST
blocks which contain the {nput varfiables.

Al though all 34 blocks are not always read by
ELES, it s recomnended that all namelist blocks
be included in ELESINP in thefr proper order.
This precaution can prevent a whole class of ter-
mination errors.

Using the liquid stage models in ELES to their
fullest potential involves the use of hundreds of
inputs. In order to organize the {nput procedures
for those varfables, an {nput worksheet has been
developed. The first portfon of that worksheet fs
presented 1n the ELES New Users Guide, pages 29
through 41. The remainder i{s presented in the
ELES Advanced Users Guide, Pages 4 through S2.

The new users worksheet is concerned with a
general overview of basic ELES options; that work-
sheet is the best place to begin. There are two
major types of input in the advanced users work-
sheet; 1) recurrent input which must always be
considered and 2) contingent input which need only
he considered if prior choices dictate.

The recurrent input includes general inputs,
fnjector related inputs, thrust chamber inputs,
and tankage inputs. These should be considered
every time ELES is run.

The coatingent input worksheet relates to
tandem tanks, non-conventional tanks, cold gas
pressurization, solid gas generator pressuriza-
tion, turbopump assemblies, regen/trans-regen
cooling, tankage heat transfer, positive expulsion
bladders, user defined prapellants, throttiing
trajectories, and short nozzle designs. Each
category need only be considered if it is a part
of the design in question.

It is highly recommended that the user photo-
copy all applicable worksheets and fill them out
prior to program execution.

ELES Output

The output from ELES consists of detailed
stage summary pages as well as an overall vehicle
sumnary. For each 1iquid stage, there is an out-
put page for warning messages, tankage summary,
stage graphical schematic, engine sumnary, propel-
lant sunmary, regenerative cooling jacket summary,
turbopump assembly (TPA) summary, feed system
temperature and pressure schedules, and an overall
stage weight breakdown.

The purpose of the warnfng page is to alert
the user to potential design flaws or program
problems. Examples of warning messages fnclude
injector orifices diameters below a typfcal mini-
mum, tank wall thicknesses design criteria
(buckling, minimum gauge, hoop stress, etc.), or
unusual termination of an iteration loop. It fs
the users responsibility to fgnore or respond to
warning messages.

The tankage summary gives a tank-dy-tank

' description of the stage. Output includes tank

contents, pressurization method, thicknesses,

* dimensfons, materfals of construction, safety

factors, residual propellant weights, pressurant
wefight, 1ine weights, propellant acquisition
system weight, and tank weights.

The stage graphical schematic {s drawn to
scale on the line printer with actual tank head
ellipse ratios. The size of the schematic is
automatically adjusted to fill the page. Because
some line printers do not use the standard number
of characters per inch in the horizontal and ver-
tical dimensfons, that information may be input by
the user. All graphics are performed by pseudo-
Tektronix routines fn ELES which mimic standard.
Tektronix commands. It {s therefore relatively
easy to convert ELES to create high resolution
Tektronix schematfics.

The engine summary begins with basic engine
design informatfon (power cycle, cooling method,
propellant combination) and then proceeds to more

ORIGINAL PAGE IS
OF POOR QUALITY



ORIGINAL PAGE IS
OF POOR QUALITY

detailed engine descriptions. The left side of
the engfine sunmary page is devoted to size and
weight information. The right side is devoted to
perfonnance-related engine parameters including a
breakdown of individual loss mechanisns to engine
perfonnance, References to “core” and “barrier”
are due to the core and barrier stream tube model
used in the performance calculations.

The propellant summary page applies over the
operating temperature range of the on-board pro-
pellants. For storable propellants this cor-
responds to the operating temperature range of the
vehicle. The first 1ine of the propellant sunmary
declares whether the propellant combination fs a
uyser defined propellant combination or a library
propellant combination. ELES allows for easy
simulation of non-1ibrary propellants using pro-
pellant property inputs. Using the method of
corresponding states, ELES predicts propellant
properties over a very wide range of temperature
and pressure. These calculations are used to
design tanks, pumps, regenerative cooling jackets,
etc.

The propellant properties displayed are pri-
marily tank design parameters. The density of
each propelliant at its maximum temperature {s used
to calculate the tank volume requirements. The
vapor pressure is used in detemining tank pres-
sure requirements.

The regenerative cooling summary describes the
heat transfer characteristics of the combustion
chamber at varfous pofnts along the gas side
wall. The heat transfer coefficient and heat flux
{s {ndicated at each point as well as 1liquid
coolant bulk temperature and pressure. S{mplified
one dimensional heat transfer and fluid hydraulics

are used to estimate the overall temperature rise
and pressure drop across the regen jacket.

The TPA sumnary gives detailed descriptions of
the punps and turbines in the power cycle.
Speeds, dimensions, efficiencies, flowrates,
number of stages, weights, horsepowers, and admis-
sion fractions are included for pumps, boost
punps, and turbines.

The pressure and temperature schedules show
the pressyre and temperature at various key points
{n the propellant feed system as well as pressure
and temperature changes across key sections of the
feed system. A flowrate schedule ts also included
which shows flowrates through the major components
of the feed system.

The overall stage weight summary is a list of
211 ftems in the stage which contribute to its
weight. Inert weights are presented separately
from propellant or pressurant weights.

The final page of output {s the vehicle
sumnary which gfives an overview of all vehicle
stages. The stage masses, mass fractions, dimen-
sions, and performances are overviewed.

Concluding Remarks

Sfnce fts {nftfal configuration 1n 1980, ELES
has been of great benefit to fts creaters in
analyzing propulsion system concepts in a timely,
cost-effective manner. As its use spreads ft {s
establishing 1tself as a standard in the fleld of
preliminary propulsion system design. To the
authors knowledge there {s no comparable method by
which propulsfon system design parameters can be

optimized with nearly the speed or accuracy which
ELES offers.
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OTV BASELINE WITH AEROBRAKE

H/O Engines
Isp = 470
O/F =5.5
15.9 MT Payload
Delta V = 5.36 Km/Sec
15% Aerobrake
25% Added to Tanks and Engines
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BASELINE

159 MT Payload
H/O Engings
Isp = 469
Delta V = 20567 Ft/Sec
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SINGLE STAGE TO MOON

H/O Engines: High Thrust (15000 Ib/engine)
Isp = 471
15.9 MT Payload
Deita VY = 20564 Ft/Sec
Lightweight Enginas and Tanks
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OTV BASELINE NO AEROBRAKE

H/O Engines
Isp = 470
QO/F =5.5
15.9 MT Payload
Delta V = 8.34 Km/Sec
25% Increase on Engines and Tanks
No Aerobrake
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c-22

LANDER (NO LANDING GEAR) O/F 8.73

H/O Engines
Isp = 421
O/F =8.73
15.9 MT Payload
Delta V = 4.17 Km/s
No Landing Gear
25% Added to Tanks and Engines

ASthﬂ&UﬁCS CCRPORATION OF AMERICA — TECHNOLOGY CENTER
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C-25

LANDER (NO LANDING GEAR) O/F = 10.6

H/O Engines
isp = 384
O/F = 10.6
15.9 MT Payload
Delta V = 4.17 Km/Sec
No Landing Gear
25% Added to Tanks and Engines

Astronautics CORPORATION OF AMERICA — TECHNOLOGY CENTER
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c-28

LANDER (NO LANDING GEAR) CARRYING
FUEL FOR OTV RETURN TRIP

H/O Engines

Isp = 470
O/F=5.5

15.9 MT Payload

Delta V = 4.17 Km/Sec
No Landing Gear
Carries LH2 for OTV Return Trip
25% Added to Engines and Tanks
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AL/LOX LANDER WITH LANDING GEAR

AL/LOX Engines
Isp = 260
O/F = 2.18
15.9 MT Payload
Delta V = 4.2 Km/Sec
5% Landing Gear
25% Added to Tanks and Engines

A AstronautiCs CORPORATION OF AMERICA — TECHNOLOGY CENTER
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AP/LOX LANDER WITH LANDING GEAR 1/2 PAYLOAD

AL/LOX Engines
Isp = 260
O/F = 2.18
7.95 MT Payload
Delta V = 4.2 Km/Sec
5% Landing Gear
25% Added to Tanks and Engines

Astronautims CORPORATION OF AMERICA — TECHNOLOGY CENTER
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AL/LOX OTV (NO AEROBRAKE)

AL/LOX Engines
isp = 260
O/F = 2.18
15.9 MT Payload
Delta V = 8.34 Km/Sec
No Aerobrake
25% Added to Tanks and Engines

Astronautics CORPORATION OF AMERICA — TECHNOLOGY CENTER
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C-40

AL/LOX OTV WITH AEROBRAKE

AL/LOX Engines
Isp = 260
O/F = 2.18
15.9 MT Payload
Delta V = 5.36 Km/Sec
15% Aerobrake
25% Added to Tanks and Engines

Astronautics CCRPORATICN OF AMERICA — TECHNOLOGY CENTER
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SINGLE STAGE TO MOON

Alum/O Engines
Isp = 260
Q/F =210
15.9 MT Payload
Delta V = 20600 Ft/Sec
Lightweight Tanks and Engines

A AStronautiCs CORPORATION OF AMERICA — TECHNOLOGY CENTER
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C-46

SINGLE STAGE TO MOON

AL/O Engines: High Thrust (1500 Ibs/engine)
Isp = 260
OfF = 2.18
15.98 MT Payload
Delta V = 19440 Ft/Sec
Lightweight Tanks and Engines
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SECOND STAGE HAD
DELTA V = 1.12 Km/Sec

1ST STAGE HAD NO GUIDELINES

H/O Engines
O/F =55
Isp = 470
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c-52

HIGH O/F OTV WITH AEROBRAKE (PRESSURE FED)

H/O Engines (Pressure Fed)
Isp = 381
O/F = 1117
15.9 MT Payload
Delta V = 5.36 Km/sec
15% Aerobrake
25% Added to Tanks and Engines
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C-55

OTV WITH AEROBRAKE (PRESSURE FED)
COMPOSITE TANKS

H/O Engines (Pressure Fed)
Isp = 466
O/F = 5.81
15.9 MT Payload
Delta V= 5.36 Km/Sec
15% Aerobrake
25% Added to Tanks and Engines
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APPENDIX D

ENGINE/PERFORMANCE DATA

D.1 ASTROSIZE OUTPUT DATA
D.2 SAMPLE ASTROFEST OUTPUT DATA
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ASTROSIZE OUTPUT DATA
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RUN

Enter the name of the data file for the

vehicie you wish to use:ASA.DAT

Enter slope and Y—intercept of process function:.001Z%,2300
A) OTY % Lander: Lunar propellants available

B) OTV & Lander: Lurar propellants not available

C) Integrated OTV/Lander: Lunar propellants available

D) Integrated OTV/Lander: Lunar propellants neot available
Choose which type af configuration you will use:A

Enter the year wnich you wish to deliver equipment:15%3
Year: 1995
Lunar #ropellant: 89419.34
Lunar LOX: 879412, 54

Lunar Fuel: Q

Earth Fropellant: S3553.43
Earth LOX: 31
Earth Fu=sl: i

J

3
@

[l |

.G
.8

w ~

5
Q

[N

Mumbker of Flights:

Number of Manned Flights:
Mase Delivered (kg): . 25134.13
Additiecnel Burdened PMass (kg)

J O M

2434, 129

es w0 |}

Mass Raquired Frem Earth (kg) 78687.546
Year: 1956

Lunar Fropellant: 87644.85

Lurnar LOX: 87644.85

Lunar Fuel: 0

Earth Fropellant: 49371.22

Earth LOX: 28291.52

Earth Fuel: 21079.7

Number of Flights: 2

Mumber of HManned Flignts: o

Mass Delivered (kg): 228Z21.47

Additional Burdened Mass (kg): 131.4707
Mass Fequired From Earth (kg): 72202.6%9
Year: 1559

Lunar Fropellant: 41395.88

Lurnar LDBX: 413%5.88

Lunar Fuel: 0

Earth Fropellant: 1B%S7.8

Earth LOX: FET2.62

Earth Fuel: 9285, 182

NMumber of Flights: 1

Mumber of Manned Flights: 0O

Mases Delivered (kg): 826Z.094

Additional Burdened Mass {(kgi: 62.09375
Mass FRequired Frem Earth {(kg): 27219.9

K
A AstronautiCs corroraTION OF AMERICA — TECHNOLOGY CENTER
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Year: 2003

Lunar Fropellant:

Lurar LOX: - 33806011
Lunar Fuel: o}

Earth Prapellant:
Earth LOX: 144732,09
Earth Fuel: 8725. 488

Number of Flights:

Mumber of Manned Flights:
Mass Delivered (kgl:
Additional Burdenzd Mass
Mass Required From Earth

Year: 2004
Lunar Freopellant:

Lunar LOX: 3I3506.11
Lunar Fuel: 0

Earth Fropellant:
Earth LOX: 14473, 09
Earth Fuel: 2723.488

Number of Flights:

Number of Manned Flights:

Mass Delivered (kg):
Additianal Burdensd llass
Mass Required From Earth

Year: 2005
Lunar Fraopellant:

Lunar LOX: Z217%22.4
Lunar Fuels 9

Earth fFrepellant:

Earth LOX: 110282.8
Earth Fuel: &0147.67

nwumber af Flights:

Number of Manned Flights:

Mass Delivered {(kg?i:

fpdditianal EBurdened Mass
Mass Required From Earth

ORIGINAL p
AGE IS
OF POOR QuaLTy

« 3I3S06.11

23196.58

1

1

6850, 26
(kg):
(kgi:

3380611
23196.38

1

1

&8S0. 26
(kg):
{kg):

5
2
76129.88
(kg):
{kg):

S50.25928

30046.83

50.25%28

30046.83

3Z29.88z8
247167 .4

D-5
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Do you wish to use another vehicle after 200357 (Y/N):N

Year: 2006

Lunar Fropellant:
Lunar LOX: 1204935.2
Lunar Fuel: (@)

Earth Fropellant:
Earth LOX: 80226.04
Earth Fuel: 346494.4

Number of Flightsa:

Number of Manned Flighte:
Mass Delivered (kg):
Additional Burdened Mass
Mass Required From Eartih

Year: 2007
Lunar Fropellant:

Lunar LOX: 208038. %9
Lunar Fuel: 0]

Earth Prapellant:

Earth LOX: 10833531.3

Earth Fuei: 597521.86

Number of Flights:

Mumber of Manned Flights:

Mass Delivered {(kg):
fdditicnal Burdened Mzacss
Mass Required From Eaith

Year: 2008
Lunar Fropellant:

Lunar LOX: 137207.4
Lunar Fuel: 0O

Earth Propellant:

Earth LOX: S3T006B.7

Earth Fuel: 34584.773

Mumber ot Flights:

Number of Manned Flighwts:

Mass Delivered (kg):
Additional Burdened Mass
Mass Required From Earth

120493=.2

116720.4

3
466870.74
{kg):
tkgl:

208033.9

=
'}
-

69512, 0646
(kg):
(kgl:

8]

g75%%.4

e

41905.31
(kal:

{hgi:

180.7383
163401.2

312.0547

g =P
235345.2

205.8125
1294992

A AStronautiCs CORPORATION OF AMERICA — TECHNOLOGY CENTER



Year: 2009

Lunar Frecpellant: 453490

Lunar LOX: 4534%0

Lunar Fuel: )

Earth Fropellant: 405828.3

Earth LOX: 2770190.1

Earth Fuel: 1328168.2

Number of Flights: 11

Number of Manned Flights: ?

Ma=se Delivered (kgl: 1485880.2

Addi tional Burdened Mase (kg): 680.2344
Mass Required From Earth (kg): S78530B8.6
Year: 2010

Lunar Fropellant: 474745.7

Lunar LOX: A74745.7

Lunar Fuel: 8]

Earth Fropellant: 3IP1417.2

Earth LOX: 258151.4

Earth Fuel: 133255.8

Number of Flights: 11

Number of Mannred Flights: &

Mass Delivered (kgi: 169812, 1

Additional Burdened Mass (kgl: 712,125

Mass Required From Earth (kgl: S61229.4

Year: 2011

Lunar Fropellant: 240132.7

Lunar LOX: 24CG13%.7

Lunar Fuel: G

Earth Propeilant: 231443

Earth LOX: 136971.8

Earth Fuel: 72551.16

Number of Flights: )

Humber of Manned Flights: &

Mass Delivered {(kgl: FL2L£0.21

Additional Burdened Mass (kg): 360.211
Mass Required From Earth (kgi: 3I23703.2

A AsStronautiCs CORPORATION OF AMERICA — TECHNOLOGY CENTER




ORIGINAL PAGE 15

Year: 2013

Lunar Fropellant: 474745.7
Lurpar LOX: 378745, 7

Lunar Fuel: o

Earth Propellant: 391417.2
.Earth (L 0OZ: 2581561.4

Earth Fuel: 133255.8

Mumber of Flights: 11

Number of Manned Flights: &

Mass Del:ivered (kg): 169812, 1

Additional Burdeneg fass (kg):
Mass Reguired From Earth (kyg):

Year: 2014

Lunar Propellant:

Lunar LCi: 233134.8

-bunar Fuel: Q

Earth Fropellant: 214915.1
Earth LOX: 145984, 4

Earth Fuel: 68930.75

Number cf Flights: b
Number of Manned Flights: 6
Mass Delivered (kg): 8
Additicral Burdened Mass (kg):
Mass Required Fram Earth (kg):

Year: 2013

Lunar Freopellant:
Lunar i_0X: S053735.7
Lunar Fuel: 9]

Earth Fropellant: 349410, 7
Earth LOX: 2 : 4
Earth Fuel:

Mumber cf Flights: 1
Number of Manned Flights: 1
Maecse Dslivered i{kg): 1
Additionai Burdened liass (:g):
Mass Required Fraom Earth (kg):

F12.125

S61229.4

I49.7031
2580&4.8

Fo8.0oS

514868.8




Total

Yehicle Data File:

]

ORIGINAL PAGE 15
OF POOR C/ATTH

mzmm==cm==T0TAL SSs==sma=gsoomm
Fropellant from Maon: 33827646
LOX from Moon: 3382766
Fuel! from HMoon: 6]

Fuel +ogr OTV from Moon:
Fuel faor Larder from Meaon:

Fropellant from Earth:
LOX from Earth:
Fuel from Earth:

2915817
30873.4

0TV Fuel frocm Earth: S22047.8
Lander Fuel from Earth:

Fropellant: 5050677
Mumber of Fiights: 79
Mumber of Manned Flights:
Mass Delivered (kg): 1153329

fadditicenal Burdened Mass (kg):
Mass Required Frem Earth (kg)l:

ASA. DAT

N

K

-0

-
N

B

oy

w
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SAMPLE ASTROFEST OUTPUT DATA
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BASELINE

H/ O OTV & LANDER
15% AEROBRAKE
470 sec Isp
15873 kg PAYLOAD (35000 Ibs)
550 /F

NO LUNAR PROPELLANT AVAILABLE

Astronautiw CORPORATION OF AMERICA — TECHNOLOGY CENTER
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RUN

T~ wou uich to create a data file? [Y]:Y

What do you wish to call the data file:BASE.DAT

Do you wish to use an aerobrake? [Y]:Y

Enter the aerobrake mass percent:l5

Do you wish to use 2 separate vehicles? [Y]:Y

Enter Isp for UTV and for Lander:470,470

Enter OTV mass kg (NOT including tanks):840

Enter Lander mass kg (NOT including tanks and landing gear):
840

Fnter the maximum payload for OTV & for Lander:15873,8973

Enter the O/F mixture ratio for the OTV & for the Lander:5.5,5.5
Enter the number of engines & engine thrust for the 0TV:2,33361
Enter mass for each engine & its thrust structure for OTV:95

Enter the number of engines & engine thrust for the Lander:2,33361

Enter mass for each engine & its thrust structure for Lander:95
A) LOX - HYDROGEN

B) LOX - ALUMINUM

C) LOX - MMH

D) LOX - SILANE

Choose the type of engine to be used for the OTV & Lander:4,A

Do you wish to use lunar propellants? (Y]}:N
Enter the maximum number of engines allowed for Lander:2

EE TS SN S S X C N SE ST SXISESSESESSSESSSESEs

This is & two vehicle configuration which does not use

Lunar propellants. The OTV travels from LEO to LLO, carrying
a payload and all of the propellant needed by the Lander.

The Lander makes one round trip from LSB to LLO, carrying

the OTV payload to LSB and delivering a payload from LSB to
the OTV. The OTV then returns to LEO.

————————————————— OTV DESIGN--—--—————emmeme
OTV ENGINE DATA:

Isp: 470

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 5.5
OTV MASS (kg):

Dry Mass: 1030

Aerobrake Mass: 3410.811

LOX Tank Mass: 367.044

Fuel Tank Mass: 1618.33

Pressure Tank Mass: 0

Total Mass: 6426.185

OTV PROPELLANT CAPACITY (kg):

ORIGINAL PAGE is
OF POOR QuALITY
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Total LOx Capacity: 91/60.99 D-13
LOX Carried for OTV: 70985.13

LOX Carried for Lander: 20775.86

Additional LOX Storage Capability for Return Trip: 0

Fuel Capacity for OTV: 12906.39

Fuel Capacity Carried for Lander: 3777.43

Total Propellant Capacity: 83891.52

Percent of return trip LOX from LSB: 0
Percent of return trip Fuel from LSB: 0
Payload Capability to LSB: 15873

Return Payload Capability: 15873

Mass Fraction: T .9288491

LANDER ENGINE DATA:

Isp: 470

Number of engines: 2

Thrust per engine (N): " 33361

Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 5.5

LANDER MASS (kg):

Dry Mass: 1030

Landing Gear Mass: 1841.305
LOX Tank Mass: 83.10345
Fuel Tank Mass: 366.4107
Pressure Tank Mass: 0

Total Mass: 3320.819

LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: 20775.86

Fuel Capacity: 3777.43

Total Propellant Capacity: 24553.29

Percent of Lander LOX supplied from LSB: 0

Percent of Lander Fuel supplied from LSB: 0
Maximum Payload Capability: 8973

Liftoff Payload Capability: 8973

Mass Fraction: .8808637

This data has been stored in a file called: BASE.DAT



H/ O OTV & LANDER
LLOX AVAILABLE
Isp = 470
15.9 MT PAYLOAD

15% AEROBRAKE

Astronautics CORPORATION OF AMERICA — TECHNOLOGY CENTER
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D~15
RUN
Do you wish to create a data file? L[Y1:VY
What do you wish to call the data file:ASA.DAT
Do you wish to use an aerobrake? [YJ:Y
Enter the aerobrake mass percent:13J
Do you wish to use 2 separate vehicles? [Y1:Y
Enter Isp for OTV and for Lander:470,470

Enter OTV mass kg (NOT including tanks):1030 .
Enter Lander mass kg (NOT including tanks and landing gear):
1070

Enter the maximum payload for 0TV & for Lander:15877,15873

Enter the O/F mixture ratio for the OTV % for the Lander:5.5.5.5
Enter the number oOf engines % engine thrust for the 0TV:2,33361
Enter mass for each engine % its thrust structure for 0TV:95
Enter the number of engines % engine thrust for the Lander:2,3T7361
Enter mass for each engine % its thrust structure for Lander:5%
A) LOX - HYDROGEN

B) LOX - ALUMINUM

€C) LOX - MMH

D) LOX - SILANE

Choose the type of engine to be used for the OTV and Lander:A,A

Do you wish to use lunar propellants? (Y1:Y

Enter the percent of fuel % of oxidizer from Moon for Lander:
0,100

Enter the percent of fuel % of oxidizer from Moon for OTV:
0,100

Should the ammount of Lunar LOX returned be the driving factor
for the vehicle design? (Y/N):N
Enter the maximum number of engines allowed for the Lander:2

The Lander liftoff pavload capability is: 8973

Do you wish to change the engine constraint to allow a
larger payload? (Y/N):N

The Lander does not have the lift capability to return
a manned capsule and the propellant needed for the OTV.
Enter a ¢ if you wiceh to increace the number of Lander
trips. Enter a 1 if you wish to increase the number of
lLander engines,0

This'is a two vehicle configuration which uses Lunar propellants.
The OTY travels to LLO carrying a payload and propellant

for the tander. The Lander makes 2 round-trip(s) from LSE to
LLO. It carries the OTV payload to LSE and delivers Lunar
propellant to the OTV. After Z Lander trip(s), the 0TV

departs for LED, loaded with Lunar propellants.

LUMNAR LOX LOADED ONTOQ OTV AT LSE: 17766.54
LUNAR LOX USED EY OTVY: 43708.442

LUMNAR FUEL USED BY OTV @ )
LUNAR LOX FETURMED=
LEO-BASED LOX BURNED:

————————————————— NTY MFATRMe e e e

0TV ENGINE DATA:
‘Isp: 470
Number of engines:
Thrust per engine (M): o6l

Mass of each engine % its thrust structure (kg
LOX - Hydrogen engine with MF: 5.5

Ye 9SS
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0TV MASS (kg):

Dry Mass: 1030
Aerobrake Mass:

LOX Tank Mass:

Fuel Tank Mass:
Pressure Tank Mass:

Total Mass: $248.27

0TV PROFELLANT CAPACITY (kg)

Total LOX Capacity:
LOX Carried for OTVY:
LOX Carried for Lander:

Additional LOX Storage Capability for

Fuel Capacity for OTV:

£888.184

155.7047
1194. 3
(o]

33926.18
33926.18
0

69%1.75

Fuel Capacity Carried for Lander:

Total Fropellant Capacity:

40877.93

Fercent of return trip LOX from LSB:
Fercent of return trip Fuel from LSB:

FPayload Capability to LSB:
Return Fayload Capability:

Mass Fraction:

- LANDER DESIGN

15873
15873
. 8862193

Feturn Trip: Q

TT61. 437

LANDER ENGINE DATA:

Isp: 470

Number of engines: 2
Thrust per engine (N): 33361
Mases of each engine % its thrust structure (kg): T
LOXY - Hydrogen engine with MR: S.5

LANDER MABS (kg):

Dry Mzass: 1020

Landing Gear Mass: 1846, 201

LOX Tank Mass: 83.4128

Fuel Tank Mass: 367.7746

Fressure Tank Mass: Q

Total Mass: TT2T.782

LANDER PROFELLANT CAFACITY (kg):

LOX Capacity: 20887, 2

Fuel Capacity: I791.49

Total Fropellant Capacity: 24644, 69

Fercent of Lander LOX supplied from LSE: 100

Percent of Lander Fuel supplied from LSE: Q
,Maximum Fayload Capability: 158772

Liftoff Fayload Capability: 8977 .
Tani: Structure for Refueling 0OTV: 89.72999

Macse Fraction: -Q3104481

This data has been stored in a file called: AS
Qb

£ .
e

p o3

S Smme SSem e Sewf EN M aEEX BB AEm

N
——— el

N E—— [ . [



- N R ) S EN B EN e

n e Ny e O e

H/ O OTV & LANDER
LLOX AND LUNAR HYDROGEN AVAEABLE
Isp = 470
15.9 MT PAYLOAD

15% AEROBRAKE

Astronautics CORPORATION OF AMERICA — TECHNOLOGY CENTER



RUN

Do you wish to create a data file? (YI:Y

What do you wish to call the data file:AS5.DAT

Do you wish to use an aerobrake? [(Y]):Y

Enter the aerobrake mass percent:1S

Da you wish to use 2 separate vehicles? (Y]):Y

Enter Isp for QTV and for Lander:470,470

Enter OTV mass kg (NOT including tanks):1030 .

Enter Lander mass kg (NOT including tanks and landing gear):
1030

Enter the maximum payload for -B8TV & for Lander:15873,15873
Enter the O/F mixture ratio for the 0TV % for the Lander:5.5,5.5
Enter the number of engines % engine thrust for the 0TV:2,33361
Enter mass for each~engine % its thrust structure for 0OTV:9S
Enter the number of engines % engine thrust for the Lander:2,33361
Enter mass for each engine- % its thrust structure for Lander:9%S
R) LOX - HYDROGEN

E) LOX - ALUMINUM

C) LOX - MMH

D) LOX - SILANE

Choase the type of engine to be used for the OTV and Lander:A,A

Do you wish to use lunar propellants? [Y1:Y

Enter the percent of fuel % of oxidizer from Moon for Lander:
100,100

Enter the percent of fuel & of oxidizer from Moon for OTV:
100,100

Should the ammount of Lunar LOX returned be the driving factor
for the vehicle design? (Y/N):N
Enter the maximum number of engines allowed for the Lander:2

The Lander liftoff payload capability is: 8973

Do ynu wish to change the engine constraint to allow a
larger payload? (Y/N):N

The Lander does not have the lift capability to return
a manned capsule and the propellant needed for the OTV.
Enter a O if you wish to increase the number of Lander
trips. Enter a 1 if you wish to increase the number of
Lander engines.(Q

This 'is a two vehicle configuration which usa2s Lunar praopellants.
The QTY travels to LLO carrying a payload and propellant ’
for the Lander. The Lander makes 2 round-trip(s) from LSE to
LLo. It carries the OTY payload to LSE and delivers Lunar
propellant to the OTV. After 2 Lander trip(s), the OTY

departs for LEO, loaded with Lunar propellants.

LUNAR LOX LOADED OMTQO OTY AT LSE: 170%7.78
LUNAR LOX USED BY OTV: 4008, 19
LUNAR FUEL USED BY OTV : 728.7418
LUNAR LOX RETURNED= 17029, 87
LEQ-BASED LOX BURNED: 25191.55

- =T NEQTRMe et e e e =

OTV ENGINE DATA:

Isp: 470

Number of engines:

Thrust per engine (N): TT561

Mass of each engine & its thrust structure (kg): 3
LOX - Hydrogen engine with MR: .5

0TV MASS  (kg):

Dry Mass: 1030
Aerobrake Mass: 2798.1

S . wEes s el Saa O wae Em SR AR
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LOX Tank Mass: 100, 7662

Fuel Tank Mass: 443, 2873
Pressure Tank Mass: [o} .
Total Mass: 4373.134

0TV PROPELLANT CAFACITY (kg):

Total LOX Capacity: 25191.5%

LOX Carried for OTV: 2%191.55

LOX Carried for Lander: [o]

Additional LOX Stordge Capability for Feturn Trip: [»]
Fuel Capacity for QTV: 4%580.281

Fuel Capacity Carried for—tander: 0

Total Fropellant Capacity: 29771.832

Fercent of return trip LOX from LSE: 100
Fercent of return trip Fuel from LSB: 100
Fayload Capability to LSE: 158732

Return Fayload Capability: 18372

Mass Fraction: .8719241

LANDER DESIGN

LANDER ENGINE DATA:

Isp: 470

Number of engines: 2

Thrust per engine (M): 3I3T361

Mass of each engine % its thrust structure (kg): S
LOX - Hydrogen engine with MR: 5.5

LANDER MASS (kg):

Dry Mass: 1030

tanding Gear Mass: 1844,201
LOX Tank Mass: 83.43128

Fuel Tank Mass: J&7.7746
Fressure Tank Mass: o]

Total Mass: I327.288

LANDER FPROFELLANT CAPACITY (kg):

LO0X Capacity: 20853.2
Fuel Capacity: 2791.49

Total Propellant Capacity: 244644, 89

Fercent of Lander LOX supplied from LSE: 100

DAT

Percent of Lander Fuel supplied from LSE: 100
Maximum Fayload Capability: 15873

Liftoff Fayload Capability: 8977z .
Tank Structure for Refueling OTV: 89.729%9

Mass Fraction: T8210451

This data has been stored in a file called: AS.
Ok

D-19



H/ O OTV & Al / LOX LANDER

OTV Isp = 470 sec
LANDER Isp = 260 sec
NO LUNAR PROPELLANTS AVAILABLE
15.9 MT PAYLOAD

15% AEROBRAKE

Astronautics CORPORATION OF AMERICA — TECHNOLOGY CENTER
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RUN

Do you wish to create a data file? [Y]:N

Do you wish to use an aerobrake? [Y]:Y

Enter the aerobrake mass percent:15

Do you wish to use 2 separate vehicles? [Y]:Y

Enter Isp for OTV and for Lander:470,260

Enter OTV mass kg (NOT including tanks):840

Enter Lander mass kg (NOT including tanks and landing gear):

1414

Enter the maximum payload for OTV & for Lander:15873,12973

Enter the O/F mixture ratio for the OTV & for the Lander:5.5,2.18
Enter the number of engines & engine thrust for the 0OTV:2,33361
Enter mass for each engine & its thrust structure for OTV:95
Enter the number of engines & engine thrust for the Lander:7,33361
Enter mass for each engine & its thrust structure for Lander:190
A) LOX - HYDROGEN

B) LOX - ALUMINUM
C) LOX - MMH
D) LOX - SILANE

E) LOX - ALUMINIZED HYDROGEN
Choose the type of engine to be used for the OTV & Lander:A,B

Do you wish to use lunar propellants? [Y]:N
Enter the maximum number of engines allowed for Lander:7

This is a two vehicle configuration which does not use

Lunar propellants. The OTV travels from LEO to LLO, carrying
a payload and all of the propellant needed by the Lander.

The Lander makes one round trip from LSB to LLO, carrying

the OTV pavload to LSB and delivering a payload from LSB to
the OTV. The OTV then returns to LEO.

————————————————— OTV DESIGN---—— oo
OTV ENGINE DATA:

Isp: 470

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 5.5
OTV MASS (kg):

Dry Mass: 1030

Aerobrake Mass: 3908.108

LOX Tank Mass: 1001.929

Tank for OTV Fuel: 3138.565

Tank for Lander Fuel: 99.80154

Pressure Tank Mass: 499.,0077

Total Mass: 9677.412

OTV PROPELLANT CAPACITY (kg):
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Total LOX Capacity: 250482.3
LOX Carried for OTV: 177959.9
LOX Carried for Lander: 72522.46
Additional LOX Storage Capability for

Fuel Capacity for OTV: 32356.34
Fuel Capacity Carried for Lander:

Total Propellant Capacity: 210316.2

Percent of return trip LOX from LSB:
Percent of return trip Fuel from LSB:

Payload to LSB: ‘15873
Return Payload Capability: 15873

Mass Fraction: .9560105

LANDER ENGINE DATA:

Isp: 260
Number of engines: 7
Thrust per engine (N): 33361

Mass of each engine & its thrust structure

LOX - Aluminum engine with MR:

LANDER MASS (kg):

Dry Mass: 2744

Landing Gear Mass: 6447.542
LOX Tank Mass: 471.396
Fuel Tank Mass: 99.80154
Pressure Tank Mass: 499.,0077
Total Mass: 10261.75

LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: 72522.46
Fuel Capacity: 33267.18
Total Propellant Capacity: 105789.6

Return Trip:

33267.18

Q0

‘Percent of Lander LOX supplied from LSB: 0
Percent of Lander Fuel supplied from LSB:

Payload to LSB: 15873
Liftpff Payload: 12973
Mass Fraction: .9115759
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H/ O OTV & Al / LOX LANDER
OTV Isp = 470 sec
LANDER Isp = 260 sec
LANDER O / F = 2.18
LLOX & LUNAR Al AVAILABLE
15.9 MT PAYLOAD

15% AEROBRAKE

Astronautics CORPORATION OF AMERICA — TECHNOLOGY CENTER
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RUN

Do you wish to create a data file? (Y1l:Y

What do you wish to call the data filetA122.DAT

Do you wish to use an aerobrake? (Y1:Y

Enter the aercobrake mass percent:15

Do you wish to use 2 separate vehicles? (Y):Y

Enter lsp for OTV and for Lander:470,260

Enter OTV mass kg (NOT including tanks):1030 ‘

Enter Lander mass kg (NOT including tanks and landing gear):
1794

Enter the maximum payload for OTV & for Lander:135873,1%5873

Enter the Q/F mixture ratio for the 0TV % for the Lander:35.%5,2.18
Enter the number of engines % engine thrust for the OTV:Z2,33361
Enter mass for ea&l engine % its thrust structure for 0OTV:9S
Enter the number of engines & engine thrust for the Lander:2,33361
Enter mass for each engine % its thrust structure for Lander:190
A) LOX - HYDROGENMN

B) LOZX - ALUMINUM

C) LOX - MMH

D) LOX - SILANE

Choose the type of engine to be used for the OTV and Lander:A,B

Do you wish to use lunar propellants? [YJ:Y

Enter the percent of fuel % of oxidizer from Moon for Lander:
100,100

Enter the percent of fuel & of oxidizer from Moon for OTV:
0,100

Should the ammount of Lunar LOX returned be the driving factor
for the vehicle design? (Y/N):N
Enter the maximum number of engines allowed for the Lander:?7

The Lander liftoff payload capability is: 12973
Do you wish to change the engine constraint to allow a
larger payload? (Y/N):N

This is a two vehicle configuration which uses Lunar propellants.
The OTV travels to LLO carrying a payload and propellant

for the tLander. The Lander makes 1 round-trip(s) from LSB to
LLa. It carriee the OTY payload to LSRR and delivers Lunar
propellant to the 0TVY. After 1 Lander trip(s), the 0TV

deperts for LEO., loaded with Lunar propellants.

LUNAR LOX LOADED ONTO OTV AT LSE: 12843.27
LUNAR LOX USED RY OTV: 3097.%87

LUNAFR FUEL, USED BY OTV : o

LUNAR LOX RETURNED= 9745, 682

LED-BASED LOX BURNED: 250%8.97
————————————————— OTY DESIGM~—=——~—————mm——ee

0TV ENGINE DATRA:

Isp: 470

thnher ¥ eNNinac: z

Thrust per engine (N): 33561

Mass of each engine % its thrust structure (kg): 5
LOX - Hydrogen engine with MR: S.5

.

OTV MASS (kg):

Dry Mass: 1020

Aerocbrake Mass: 2076.588
LOX Tank Mass: 100, 2289
Tank for 0OTV Fuel: 496,5794

Tank for Lander Fuel: Q °R|G|NAL PAGE |S
Fressure Tank Mass: Q OF POOR QUAL'TY

. ="} F .



o E[NAL &
00 “@£fg
Total Mass: 3703. 403 - o QUA 1
*ALITY
OTV PROFELLANT CAFACITY (kg):
Total LOX Capacity: 250%8.97
LOX Carried for OTVY: 23058,97
LOX Carried for Lander: o]
Additional LOX Storage Capability for Return Trip: o
Fuel Capacity for OTV: S119.375
Fuel Capacity Carried for Lander: 0
Total Propellant C3pacity: 25058.97
Fercent of return trip LOX from LSB: 100
Fercent of return trip Fuel from LSB: o]
FPayload Capability to LSB: 158772
Return Fayload Capability: 15873
Mass Fraction: .8712414
LANDEF DESIGN-==——m=w—eae————
LLANDER ENGINE DATA:
Isp: 260
Number of engines: 7
Thrust per engine (N): I3T61
Mass of each engime % its thrust structure (kg): 190
LOX - Aluminum engine with MR: z2.18
LANDER MASS (kg):
Dry Mass: 2744
Landing Gear Mass: 6474.846
LOX Tank Mass: 473.6859
Fuel Tank Mass: 100,.2863
Freesure Tank Mass: $01.4318
Taotal Mass: 10294.25
LANDER FROFELLANT CAFACITY (ka):
LOX Capacity: 72874.75
Fiel Canacitv: SRATR.TR
Total Fropellant Capacity: 106303.5
Fercent of Lander LOX supplied from LSE: 100
Fercent of Lander Fuel supplied from LSE: 100
Maximum Fayload Capability: 188773
Liftoff Payload Capability: 12973
Tank Structure for Refueling OTVY: 129.732
Mass Fraction: .9117114

This data has been stored in a-file called:
Ok

AIZ2. DT
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H/ O OTV & LANDER
O/F =10.6
Isp = 384 sec
NO LUNAR PROPELLANTS AVAILABLE

15.9 MT PAYLOAD

15% AEROBRAKE

Astronauti(s CORPORATION OF AMERICA — TECHNOLOGY CENTER
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RUN
Do you wish to create a data file? [Y]:

Y

What do you wish to call the data file:C1.DAT

Do you wish to use an aerobrake? {Y]:Y

Enter the aerobrake mass percent:15

Do you wish to use 2 separate vehicles? [Y]:Y

Enter Isp for OTV and for Lander:384,384

Enter OTV mass kg (NOT including tanks):955,955

Enter Lander mass kg (NOT including tanks and landing gear):
955845

Enter Lander mass kg (NOT including tanks and landing gear):

845

Enter the maximum payload for OTV & for Lander:15873,12173

Enter the O/F mixture ratio for the OTV & for the Lander:10.6,10.6
Enter the number of engines & engine thrust for the 0TV:2,33361
Enter mass for each engine & its thrust structure for OTV:110
Enter the number of engines & engine thrust for the Lander:2,33361
Enter mass for each engine & its thrust structure for Lander:110
A) LOX - HYDROGEN

B) LOX -~ ALUMINUM

C) LOX -~ MMH

D) LOX - SILANE

Choose the type of engine to be used for the OTV & Lander:A,A

Do you wish to use lunar propellants? [Y]:N
Enter the maximum number of engines allowed for Lander:3

e i P P Y R ]

This is a two vehicle configuration which does not use

Lunar propellants. The OTV travels from LEO to LLO, carrying
a payload and all of the propellant needed by the Lander.

The Lander makes one round trip from LSB to LLO, carrying

the OTV payload to LSB and delivering a payload from LSB to
the OTV. The OTV then returns to LEO.

————————————————— OTV DESIGN---w e
OTV ENGINE DATA:

Isp: 384

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 110
LOX - Hydrogen engine with MR: 10.6
OTV MASS (kg):

Dry Mass: 1065

Aerobrake Mass: 3481.878

LOX Tank Mass: 682.729

Fuel Tank Mass: 1561.904

Pressure Tank Mass: 0

D-27



D-28

Total Mass: 6791.511

OTV PROPELLANT CAPACITY (kg):

Total LOX Capacity: 170682.3

LOX Carried for OTV: 135223.2

LOX Carried for Lander: 35459.06

Additional LOX Storage Capability for Return Trip: 0
Fuel Capacity for OTV: 12756.9

Fuel Capacity Carried for Lander: 3345.195

Total Propellant Capacity: ©147980.1

Percent of return trip LOX_from LSB: 0

Percent of return trip Fuel from LSB: 0

Payload Capability to LSB: 15873
Return Payload Capability: 15873

Mass Fraction: .9561192

LANDER ENGINE DATA:

Isp: 384

Number of engines: 3

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 110
LOX - Hydrogen engine with MR: 10.6

LANDER MASS (kg):

Dry Mass: 1175

Landing Gear Mass: 2767.737
LOX Tank Mass: 141.8362
Fuel Tank Mass: 324.484
Pressure Tank Mass: 0

Total Mass: 4409.057

LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: 35459.06
Fuel Capacity: 3345.195

Total Propellant Capacity: 38804.25

Percent of Lander LOX supplied from LSB: 0

Percent of Lander Fuel supplied from LSB: 0
Maximum Payload Capability: 12173

Liftoff Payload Capability: 12173

Mass Fraction: .8979699

This data has been stored in a file called: C1.DAT

ORIGINAL PAGE (8
OF POOR QUALITY



H/ O OTV & LANDER
O/ F =106
Isp = 384 sec
LLOX AVAILABLE
15.9 MT PAYLOAD

15% AEROBRAKE

Astronautics CORPORATION OF AMERICA — TECHNOLOGY CENTER
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RUN

Do you wish to create a data file? [Y];Y

What do you wish to call the data file:C2.DAT

Do you wish to use an aerobrake? [Y):Y

Enter the aerobrake mass percent:1J

Do you wish to use 2 separate vehicles? [YJ:Y

Enter Isp for OTV and for Lander:470,260384,384

Enter OTV mass kg (NOT including tanks):1063 .

Enter Lander mass kg (NOT including tanks and landing gear):
10465

Enter the maximum payload for BTV & for Lander:13873,15873

Enter the O/F mixture ratio for tha 0TV & for the Lander:10.46,10.4
Enter the number of_engines % engine thrust for the OTV:2,33TT61
Enter mass for each engine % its thrust structure for 0TV:110
Enter the number of engines & engine thrust for the Lander:2,33T761
Enter mass for each engine & its thrust structure for Lander:110
A) LOX - HYDROGEN

B) LOX - ALUMINUM

C) LOX - MMH

D) LOX - SILANE

Choose the type of engine to be used for the OTV and Lander:,A,A

Do you wish to use lunar propellants? (YJ:Y

Enter the percent of fuel & of oxidizer from Moon for Lander:
0,100

Enter the percent of fuel & of oxidizer from Moon for 0OTV:
0,100

Should the ammount of Lunar LOX returned be the driving factor
for the vehicle design? (Y/N):N
Enter the maximum number of engines allowed for the Lander:3

The Lander liftoff paylozad capability is: 12173
Do you wish to change the engine constraint to allow a
larger payload? (Y/N):N

This is a two vehicle configuration which uses Lunar propellants.
The OTY travels to LLO carrying a payload and propellant

for the Lander. The Lander makes 1 round-trip(e}) from LSB to
LLO. It carries the OTV payload to LSRR and delivers Lunar
propellant to the OTY. After 1 Lander trip{(s), the OTV

departs for LEO, loaded with Lunar propellants.

LUNAR LOX LOADED ONTO OTV AT LSB: 120351.27
LUNAR LOX USED BY 0OTV: 3798.74%
LUNAR FUEL USED BY OTV : o]
LUMAR LOX RETURNED= 8252.52S
35.9

LED~BASED LOX EURNED: 4347
————————————————— DTV DESIGN--——==———==——m——e

OTY ENGINE DATA:

Isp: 84

Mumber ©Of gngines: 2

Thrust per engine (N): 33361

Mass of each engine % its thrust struecture (kg): 110
LOX - Hydrogen engine with MR: 10.6

OTV MASS (kg):

Dry Mass: 10635

Aerobrake Mass: 1881.986
LOX Tank Mass: 173.7836
Fuel Tank Mass: 758.25467

FPressure Tank Mass: 0 ‘ ’ ORlGlNAL PAGE 'S
Total Mass:  1878.986 : OF POOR QUALITY



0TV PROPELLANT CAPACITY (kg):

Total LOX Capacity: 4343T.9

LOX Carried for OTV: 43433.9

LDX Carried for lLander: o

Additional LOX Storage Capability for Return Trip: (o]
Fuel Capacity for 0OTV: 44%56. 1

Fuel Capacity Carried for Lander: 3360.979

Total Propellant Capacity: 47892

FPercent of return trip LOX from LSH: 100
Percent of return trip Fuel from LSB: o)

Faylocad Capability to LSB: 15873
Return Fayload Capability: 15873

Mass Fraction: . 92TNT742

LANDER DESIGN

LANDER ENGINE DATA:

Isp: 843

Number of engines: 3

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 110
LOX - Hydrogen engine with MR: 10.6

LANDER MASS (kg):

Dry Mass: 1175

Landing Gear Mass: 2777.484
LOX Tank Mass: 142.50355
Fuel Tank: Mass: 326.0151
Fressure Tank Mass: o]

Total Mass: 4421.005

LANDER FROFELLANT CAFACITY (kg):

LOX Capacity: J86246.728

Fuel Capacity: ITH0.981

Total Fropellant Capacity: 38987.36

Percent of Lander LOX supplied from LSB: 100

Percent of Lander Fuel supplied from LER: (o]
Maximum Fayload Capability: 158732

Liftoff Payload Capability: 12173

Tank Structure for Refueling 0OTV: 121.7=

Mass Fraction: . 8981552

This data has been stored in a file called: C2.0FT
Ck —

ORIGINAL pagg
'L Pagy
OF POUR C.ip.

{ETRY. Y )
e Ty

D-31



D-32

H/ O OTV & LANDER
O/F =873
Isp = 421 sec
NO LUNAR PROPELLANTS AVAILABLE
15.9 MT PAYLOAD

15% AEROBRAKE

Astronautics CORPORATION OF AMERICA — TECHNOLOGY CENTER
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RUN

Do you wish to create a data file? [Y]:Y

What do you wish to call the data file:D1.DAT

Do you wish to use an aerobrake? [Y]:Y

Enter the aerobrake mass percent:15

Do you wish to use 2 separate vehicles? [Y]:Y

Enter Isp for OTV and for Lander:421,421

Enter OTV mass kg (NOT including tanks):840,

Enter Lander mass kg (NOT including tanks and landing gear):
840

Enter the maximum payload for OTV & for Lander:15873,15873
Enter the O/F mixture ratio for the OTV & for the Lander:8.73,8.73
Enter the number of engines & engine thrust for the 0TV:2,33361
Enter mass for each engine & its thrust structure for OTV:95
Enter the number of engines & engine thrust for the Lander:2,33361
Enter mass for each engine & its thrust structure for Lander:95
A) LOX - HYDROGEN

B) LOX ALUMINUM

C) LOX - MMH

D) LOX - SILANE

E) LOX - ALUMINIZED HYDROGEN

Choose the type of engine to be used for the OTV & Lander:A,A

Do you wish to use lunar propellants? [Y]:N
Enter the maximum number of engines allowed for Lander:3

This is a two vehicle configuration which does not use

Lunar propellants. The OTV travels from LEO to LLO, carrying
a payload and all of the propellant needed by the Lander.

The Lander makes one round trip from LSB to LLO, carrying

the OTV payload to LSB and delivering a payload from LSB to
the OTV. The OTV then returns to LEO.

————————————————— OTV DESIGN----——— e

OTV ENGINE DATA:

Isp: 421

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 8.729999
OTV MASS (kg):

Dry Mass: 1030

Aerobrake Mass: 3443.29

LOX Tank Mass: 559.6293

Fuel Tank Mass: 1554.526

Pressure Tank Mass: 0

Total Mass: 6587.445

OTV PROPELLANT CAPACITY (kg): ;fd\ k/



Total LOX Capacity: 139907.3
LOX Carried for OTV: 107958.1
D-34 LOX Carried for Lander: 31949.27
Additional LOX Storage Capability for Return Trip: 0
Fuel Capacity for OTV: 12366.33
Fuel Capacity Carried for Lander: 3659.709

Total Propellant Capacity: 120324.4

Percent of return trip LOX from LSB: 0]
Percent of return trip Fuel from LSB: 0
Payload to LSB: 15873

Return Payload Capability: 15873

Mass Fraction: .9480943

LANDER ENGINE DATA:

Isp: 421

Number of engines: 3

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 8.729999

LANDER MASS (kg):

Dry Mass: 1125

Landing Gear Mass: 2780.816
LOX Tank Mass: 127.7971
Fuel Tank Mass: 354.9918
Pressure Tank Mass: 0

Total Mass: 4388.605

LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: 31949.27
Fuel Capacity: 3659.709

Total Propellant Capacity: 35608.98

Percent of Lander LOX supplied from LSB: 0

Percent of Lander Fuel supplied from LSB: 0
Payload to LSB: 15873

Liftoff Payload: 15650.45

Mass Fraction: .8902782

This data has been stored in a file called: D1.DAT
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H/ O OTV & LANDER
O/F =873
Isp = 421 sec
LLOX AVAILABLE
15.9 MT PAYLOAD

15% AEROBRAKE

AStTOﬂaUtiCS CORPORATION OF AMERICA — TECHNOLOGY CENTER
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RUN

Do you wish to create a data file? [Y]:Y

What do you wish to call the data file:D2.DAT

Do you wish to use an aerobrake? [Y]:Y

Enter the aerobrake mass percent:15

Do you wish to use 2 separate vehicles? [Y]:Y

Enter Isp for OTV and for Lander:421,421

Enter OTV mass kg (NOT including tanks):840

Enter Lander mass kg (NOT including tanks and landing gear):

840

Enter the maximum payload for OTV & for Lander:15873,15873

Enter the O/F mixture ratio for the OTV & for the Lander:8.73,8.73
Enter the number of engines & engine thrust for the 0TV:2,33361
Enter mass for each engine & its thrust structure for OTV:95

Enter the number of engines & engine thrust for the Lander:2,33361
Enter mass for each engine & its thrust structure for Lander:95

A) LOX - HYDROGEN

B) LOX -~ ALUMINUM
C) LOX -~ MMH
D) LOX -~ SILANE

E) LOX -~ ALUMINIZED HYDROGEN
Choose the type of engine to be used for the OTV & Lander:A,A

Do you wish to use lunar propellants? [Y]:Y]

Enter the percent of fuel & of oxidizer from Moon for Lander:
0,100

Enter the percent of fuel & of oxidizer from Moon for OTV:

0,100

Should the ammount of Lunar LOX returned be the driving factor

for the vehicle design? (Y/N):N
Enter the maximum number of engines allowed for the Lander:3

The Lander liftoff payload capability is: 15545.07
Do you wish to change the engine constraint to allow a
larger payload? (Y/N):N

This is a two vehicle configuration which uses Lunar propellants.
The OTV travels to LLO carrying a payload and propellant

for the Lander. The Lander makes 1 round-trip(s) from LSB to
LLO. It carries the OTV payload to LSB and delivers Lunar
propellant to the OTV. After 1 Lander trip(s), the OTV

departs for LEO, loaded with Lunar propellants.

LUNAR LOX LOADED ONTO OTV AT LSB: 15389.62
LUNAR LOX USED BY OTV: 4291.386

LUNAR FUEL USED BY OTV : 0

LUNAR LOX RETURNED= 11098.24

LEO-BASED LOX BURNED: 38271.77
----------------- OTV DESIGN--—m-—m——memmmmm

OTV ENGINE DATA:

Isp: 421
Number of engines: 2
Thrust per engine (N)- 33361



Mass of each engine & its thrust structure (kg): 95

LOX - Hydrogen engine with MR:

OTV MASS (kg):

Dry Mass: 1030

Aerobrake Mass: 2401.317
LOX Tank Mass: 153.0871
Fuel Tank Mass: 828.9523
Pressure Tank Mass: 0

Total Mass: 4413.356

OTV PROPELLANT CAPACITY (kg):

Total LOX Capacity: 38271.77
LOX Carried for OTV: 38271.77

LOX Carried for Lander: 0
Additional LOX Storage Capability for
Fuel Capacity for OTV: 4875.505
Fuel Capacity Carried for Lander:
Total Propellant Capacity: 43147.,27

Percent of return trip LOX from LSB:
Percent of return trip Fuel from LSB:

Payload to LSB: 15873
Return Payload Capability: 15873
Mass Fraction: .9072057
——————————————— LANDER DESIGN--------—-
LANDER ENGINE DATA:

Isp: 421

Number of engines: 3

Thrust per engine (N): 33361

Mass of each engine & its thrust structure

LOX - Hydrogen engine with MR:

LANDER MASS (kg):

Dry Mass:. 1125

Landing Gear Mass: 2780.816
LOX Tank Mass: 128.1702
Fuel Tank Mass: 356.0283
Pressure Tank Mass: 0

Total Mass: 4390.015

LANDER PROPELLANT CAPACITY (kg):

32042.54
3670.395

LOX Capacity:
Fuel Capacity:

8.729999
D-37

Return Trip: 0

3670.395
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Total Propelliaant Cepacity: 35712.94
of Lander LOX supplied from LSB: 100

Percent
Percent of Lander Fuel supplied from LSB: 0
Payload to LSB: 15873
Liftoff Payload: 15545.07
Tank Structure for Refueling OTV: 155.4508
Mass Fraction: .8905314
D2.DAT

This data has been stored in a file called:



H/ O OTV & LANDER
Isp = 460 sec
NO LUNAR PROPELLANTS AVAILABLE
15.9 MT PAYLOAD

15% AEROBRAKE

Astronautiw CORPORATION OF AMERICA -'récrmo&.oev CENTER
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Do you wish to create a data file? [Y]:Y

What do you wish to call the data file:AS5LI1.DAT

Do you wish to use an aerobrake? [Y]:Y

Enter the aerobrake mass percent:15

Do you wish to use 2 separate vehicles? [Y]:Y

Enter Isp for OTV and for Lander:460,460

Enter OTV mass kg (NOT including tanks):840

Enter Lander mass kg (NOT including tanks and landing gear):
840

Enter the maximum payload for OTV & for Lander:15873,15873
Fnter the O/F mixture ratio for the OTV & for the Lander:5.5,5.5
Enter the number of engines & engine thrust for the 0TV:2,33361
Enter mass for each engine & its thrust structure for OTV:95
Enter the number of engines & engine thrust for the Lander:2,33361
Enter mass for each engine & its thrust structure for Lander:95
A) LOX - HYDROGEN

B) LOX ALUMINUM

C) LOX - MMH

D) LOX - SILANE

E) LOX ALUMINIZED HYDROGEN

Choose the type of engine to be used for the OTV & Lander:A,A

Do you wish to use lunar propellants? [Y]:N
Enter the maximum number of engines allowed for Lander:2

FY i T P £ P T - R B R 2 2 2% £ % & 8

This is a two vehicle configuration which does not use

Lunar propellants. The OTV travels from LEO to LLO, carrying
a payload and all of the propellant needed by the Lander.

The Lander makes one round trip from LSB to LLO, carrying

the OTV payload to LSB and delivering a payload from LSB to
the OTV. The OTV then returns to LEO.

————————————————— OTV DESIGN---———-~omnmee o
OTV ENGINE DATA:

Isp: 460

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 5.5
OTV MASS (kg):

Dry Mass: 1030

Aerobrake Mass: 3428.453

LOX Tank Mass: 383.3489

Fuel Tank Mass: 1690.22

Pressure Tank Mass: 0

Total Mass: 6532.022

OTV PROPELLANT CAPACITY (kg):

Total LOX Capacity: 95837.21

—-—-—-“-_————-
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LOX Carried for OTV: 74520.29 OR QuALr
LOX Carried for Lander: 21316.92 Y
Additional LOX Storage Capability for Return Trip: 0
Fuel Capacity for OTV: 13549.14
Fuel Capacity Carried for Lander: 3875.803
Total Propellant Capacity: 88069.43
Percent of return trip LOX from LSB: 0
Percent of return trip Fuel from LSB: 0]
Payload to LSB: 15873
Return Payload Capability: 15873
Mass Fraction: .9309522
——————————————— LANDER DESIGN-w-w—mcmemme -
LANDER ENGINE DATA:
Isp: 460
Number of engines: 2
Thrust per engine (N): 33361
Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 5.5
LANDER MASS (kg):
Dry Mass: 1030
Landing Gear Mass: 1853.883
LOX Tank Mass: 85.26769
Fuel Tank Mass: 375.9529
Pressure Tank Mass: 0
Total Mass: 3345.103
LANDER PROPELLANT CAPACITY (kg):
LOX Capacity: 21316.92
Fuel Capacity: 3875.803
Total Propellant Capacity: 25192.72
Percent of Lander LOX supplied from LSB: 0
Percent of Lander Fuel supplied from LSB: 0
Payload to LSB: 15873
Liftoff Payload: 8560.916
Mass Fraction: .8827836
This data has been stored in a file called: ASLI1.DAT
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H/ O OTV & LANDER
Isp = 460 sec
LLOX AVAILABLE
15.9 MT PAYLOAD

15% AEROBRAKE

Astronautics CORPORATION OF AMERICA —TECHNOLOGY CENTER
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SAVE"RUN
Do you wish to create a data file? [Y]:Y
What do you wish to call the data file:A5LI2.DAT
Do you wish to use an aerobrake? [Y]:Y
Enter the aerobrake mass percent:15
Do you wish to use 2 separate vehicles? [Y]:Y
Enter Isp for OTV and for Lander:460,460
Enter OTV mass kg (NOT including tanks):840
Enter Lander mass kg (NOT including tanks and landing gear):
840
Enter the maximum payload for OTV & for Lander:15873,15873
Enter the O/F mixture ratio for the OTV & for the Lander:5.5,5.5
Enter the number of engines & engine thrust for the 0TV:2,33361
Enter mass for each engine & its thrust structure for OTV:95
Enter the number of engines & engine thrust for the Lander:2,33361
Enter mass for each engine & its thrust structure for Lander:95
A) LOX - HYDROGEN
B) LOX ALUMINUM
C) LOX - MMH
D) LOX - SILANE
E) LOX ALUMINIZED HYDROGEN
Choose the type of engine to be used for the OTV & Lander:A,A

Do you wish to use lunar propellants? [Y]:Y

Enter the percent of fuel & of oxidizer from Moon for Lander:
0,100

Enter the percent of fuel & of oxidizer from Moon for OTV:
0,100

Should the ammount of Lunar LOX returned be the driving factor
for the vehicle design? (Y/N):N
Enter the maximum number of engines allowed for the Lander:2

The Lander liftoff payload capability is: 8509.004

Do you wish to change the engine constraint to allow a

larger payload? (Y/N):N

The Lander does not have the lift capability to return

a manned capsule and the propellant needed for the OTV.
Enter a 0 if you wish to increase the number of Lander

trips. Enter a 1 if you wish to increase the number of
Lander engines.O

This is a two vehicle configuration which uses Lunar propellants.
The OTV travels to LLO carrying a payload and propellant

for the Lander. The Lander makes 2 round-trip(s) from LSB to
LLO. It carries the OTV payload to LSB and delivers Lunar
propellant to the OTV. After 2 Lander trip(s), the OTV

departs for LEO, loaded with Lunar propellants.

LUNAR LOX LOADED ONTO OTV AT LSB: 16847.83
LUNAR LOX USED BY OTV: 4197.74

LUNAR FUEL USED BY OTV : 0

LUNAR LOX RETURNED= 12650.09

LEO-BASED LOX BURNED: 35022.09
------------------- OTV DESIGN------~=~=-=mmm -
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OTV ENGINE DATA:

Isp: 460
Number of engines: 2
Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg):

LOX - Hydrogen engine with MR: 5.5

OTV MASS (kg):

Dry Mass: 1030

Aerobrake Mass: 2747.697
LOX Tank Mass: 140.0884
Fuel Tank Mass: 1221.57

Pressure Tank Mass: 0

Total Mass: 5139.356

OTV PROPELLANT CAPACITY (kg):

Total LOX Capacity: 35022.09

LOX Carried for OTV: 35022.09

LOX Carried for Lander: 0

Additional LOX Storage Capability for Return Trip:
Fuel Capacity for OTV: 7130.879

Fuel Capacity Carried for Lander: 5462.627

Total Propellant Capacity: 42152.97

Percent of return trip LOX from LSB: 100
Percent of return trip Fuel from LSB: 0
Payload to LSB: 15873

Return Payload Capability: 15873

Mass Fraction: .8913279

LANDER ENGINE DATA:

Isp: 460
Number of engines: 2
Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg):

LOX - Hydrogen engine with MR: 5.5

LANDER ‘MASS (kg):

Dry Mass: 1030

Landing Gear Mass: 1853.883
LOX Tank Mass: 85.44023
Fuel Tank Mass: 376.7137
Pressure Tank Mass: 0

Total Mass: 3346.037

95

95



LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: 21360.06

Fuel Capacity: 3883.647

Total Propellant Capacity: 25243.7

Percent of Lander LOX supplied from LSB: 100

Percent of Lander Fuel supplied from LSB: 0
Payload to LSB: 15873

Liftoff Payload: 8509.004

Tank Structure for Refueling OTV: 85.09004

Mass Fraction: .8829637

This data has been stored in a file called: ASLI2.DAT



H/ O OTV & LANDER
Isp = 490 sec
NO LUNAR PROPELLANT AVAILABLE
15.9 MT PAYLOAD

15% AEROBRAKE
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RUN

Do you wish to create a data file? [Y]:Y

What do you wish to call the data file:ASHI1.DAT

Do you wish to use an aerobrake? [Y]:Y

Enter the aerobrake mass percent:15

Do you wish to use 2 separate vehicles? [Y]:Y

Enter Isp for OTV and for Lander:490,490

Enter OTV mass kg (NOT including tanks):840

Enter Lander mass kg (NOT including tanks and landing gear):
840

Enter the maximum payload for OTV & for Lander:15873,15873
Enter the O/F mixture ratio for the OTV & for the Lander:5.5,5.5
Enter the number of engines & engine thrust for the 0TV:2,33361
Enter mass for each engine & its thrust structure for OTV:95
Enter the number of engines & engine thrust for the Lander:2,33361
Enter mass for each engine & its thrust structure for Lander:95
A) LOX - HYDROGEN -

B) LOX - ALUMINUM

C) LOX MMH

D) LOX - SILANE

E) LOX - ALUMINIZED HYDROGEN -

Choose the type of engine to be used for the OTV & Lander:A,A

t

Do you wish to use lunar propellants? [Y]:N
Enter the maximum number of engines allowed for Lander:2

This is a two vehicle configuration which does not use

Lunar propellants. The OTV travels from LEO to LLO, carrying
a payload and all of the propellant needed by the Lander.

The Lander makes one round trip from LSB to LLO, carrying

the OTV payload to LSB and delivering a payload from LSB to
the OTV. The OTV then returns to LEO.

————————————————— OTV DESIGN-~-=——mmcme
OTV ENGINE DATA:

Isp: 490

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 5.5
OTV MASS (kg):

Dry Mass: 1030

Aerobrake Mass: 3381.473

LOX Tank Mass: 340.266

Fuel Tank Mass: 1500.263

Pressure Tank Mass: 0

Total Mass: 6252.002

OTV PROPELLANT CAPACITY (kg):




Total LOX Capacity: 85066.49

LOX Carried for OTV: 65059.87
LOX Carried for Lander: 20006.62
Additional LOX Storage Capability for

Fuel Capacity for OTV: 11829.07
Fuel Capacity Carried for Lander:

Total Propellant Capacity: 76888.94

Percent of return trip LOX from LSB:
Percent of return trip Fuel from LSB:

Payload to LSB: 15873
Return Payload Capability: 15873
Mass Fraction: .9248023

LANDER ENGINE DATA:

Isp: 490
Number of engines: 2
Thrust per engine (N): 33361

Return Trip:

3637.567

Mass of each engine & its thrust structure (kg):

LOX -~ Hydrogen engine with MR:

LANDER MASS (kg):

Dry Mass: 1030

Landing Gear Mass: 1853.878
LOX Tank Mass: 80.02649
Fuel Tank Mass: 352.8439
Pressure Tank Mass: 0

Total Mass: 3316.749

LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: 20006.62
Fuel Capacity: 3637.567
Total Propellant Capacity: 23644.19

5.5

Percent of Lander LOX supplied from LSB: 0
Percent of Lander Fuel supplied from LSB:

Payload to LSB: 15873
Liftoff Payload: 10137.77
Mass Fraction: .8769795

This data has been stored in a file called:

ASHI1.DAT



H/ O OTV & LANDER
Isp = 490 sec
LLOX AVAILABLE
15.9 MT PAYLOAD

15% AEROBRAKE

Astronautics CORPORATION OF AMERICA — TECHNOLOGY CENTER
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RUN
Do you wish to create a data file? [Y]:Y

What do you wish to call the data file:A5HI2.DAT

Do you wish to use an aerobrake? [Y]:Y

Enter the aerobrake mass percent:15

Do you wish to use 2 separate vehicles? [Y]:Y

Enter Isp for OTV and for Lander:490,490

Enter OTV mass kg (NOT including tanks):840

Enter Lander mass kg (NOT including tanks and landing gear):

840

Enter the maximum payload for OTV & for Lander:15873,15873

Enter the O/F mixture ratio for the OTV & for the Lander:5.5,5.5-
Enter the number of engines & engine thrust for the 0TV:2,33361
Enter mass for each engine & its thrust structure for OTV:95

Enter the number of engines & engine thrust for the Lander:2,33361
Enter mass for each engine & its thrust structure for Lander:95 -
A) LOX - HYDROGEN

B) LOX ALUMINUM

C) LOX - MMH

D) LOX - SILANE

E) LOX - ALUMINIZED HYDROGEN
Choose the type of engine to be used for the OTV & Lander:A,A

Do you wish to use lunar propellants? [Y]:Y
Enter the percent of fuel & of oxidizer from Moon for Lander:

0,100
Enter the percent of fuel & of oxidizer from Moon for OTV:

0,100

Should the ammount of Lunar LOX returned be the driving factor

for the vehicle design? (Y/N):N
Enter the maximum number of engines allowed for the Lander:2

The Lander liftoff payload capability is: 10080.95
Do you wish to change the engine constraint to allow a

larger payload? (Y/N):N

This is a two vehicle configuration which uses Lunar propellants.
The OTV travels to LLO carrying a payload and propellant

for the Lander. The Lander makes 1 round-trip(s) from LSB to
LLO. It carries the OTV payload to LSB and delivers Lunar
propellant to the OTV. After 1 Lander trip(s), the OTV

departs for LEO, loaded with Lunar propellants.

LUNAR LOX LOADED ONTO OTV AT LSB: 9980.144
LUNAR LOX USED BY OTV: 2476.671

LUNAR FUEL USED BY OTV : 0

LUNAR LOX RETURNED= 7503.474

LEO-BASED LOX BURNED: 27733.43
----------------- OTV DESIGN~--——=cm—m——ommmm

OTV ENGINE DATA:

Isp: 490

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95



LOX - Hydrogen engine with MR:

OTV MASS (kg):

Dry Mass: 1030

Aerobrake Mass: 1737.292
LOX Tank Mass: 110.9337
Fuel Tank Mass: 886.,4729
Pressure Tank Mass: 0

Total Mass: 3764.698

OTV PROPELLANT CAPACITY (kg):

Total LOX Capacity: 27733.43
LOX Carried for OTV: 27733.43
LOX Carried for Lander: 0

Additional LOX Storage Capability for

Fuel Capacity for OTV:

5492.746

Fuel Capacity Carried for Lander:

Total Propellant Capacity: 33226.18

Percent of return trip LOX from LSB:
Percent of return trip Fuel from LSB:

Payload to LSB: 15873
Return Payload Capability: 15873

Mass Fraction: .8982262
——————————————— LANDER DESIGN-w--eceoemee
LANDER ENGINE DATA:

Isp: 490

Number of engines: 2

Thrust per engine (N): 33361

Return Trip:

3646.151

100

Mass of each engine & its thrust structure (kg):
LOX - Hydrogen engine with MR:

LANDER MASS (kg):

Dry Mass: 1030

Llanding Gear Mass: 1853.879
LOX Tank Mass: 80.21533
Fuel Tank Mass: 353.6766
Pressure Tank Mass: 0

Total Mass: 3317.771

LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: 20053.83
Fuel Capacity: 3646.151
Total Propellant Capacity: 23699.98

5.5

95
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Percent of Lander LOX supplied from LSB: 100
Percent of Lander Fuel supplied from LSB:

Payload to LSB: 15873

Liftoff Payload: 10080.95

Tank Structure for Refueling OTV: 100.8095
Mass Fraction: .8772003

This data has been stored in a file called:

ASHIZ2.DAT
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H/ O OTV & LANDER
Isp = 470 sec
NO LUNAR PROPELLANTS AVAILABLE
10 MT PAYLOAD

15% AEROBRAKE
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RUN

Do you wish to create a data file? [Y]:Y

What do you wish to call the data file:E1.DAT

Do you wish to use an aerobrake? {[Y]:Y

Enter the aerobrake mass percent:15

Do you wish to use 2 separate vehicles? [Y]:Y

Enter Isp for OTV and for Lander:470,470

Enter OTV mass kg (NOT including tanks):840

Enter Lander mass kg (NOT including tanks and landing gear):
840

Enter the maximum payload for OTV & for Lander:10000,10000
Enter the O/F mixture ratio for the OTV & for the Lander:5.5,5.5
Enter the number of engines & engine thrust for the OTV:2,33361
Enter mass for each engine & its thrust structure for OTV:95
Enter the number of engines & engine thrust for the Lander:2,33361
Enter mass for each engine & its thrust structure for Lander:95
A) LOX - HYDROGEN

B) LOX - ALUMINUM

C) LOX MMH

D) LOX - SILANE

E) LOX - ALUMINIZED HYDROGEN

Choose the type of engine to be used for the OTV & Lander:A,A

Do you wish to use lunar propellants? [Y]:N
Enter the maximum number of engines allowed for Lander:2

e L L L L R b b T

This is a two vehicle configuration which does not use

Lunar propellants. The OTV travels from LEO to LLO, carrying
a payload and all of the propellant needed by the Lander.

The Lander makes one round trip from LSB to LLO, carrying

the OTV payload to LSB and delivering a payload from LSB to
the OTV. The OTV then returns to LEO.

————————————————— OTV DESIGN--mcmem e e -
OTV ENGINE DATA:

Isp: 470

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 5.5
-OTV MASS (kg):

Dry Mass: 1030

Aerobrake Mass: 2253.996

LOX Tank Mass: 268.4688

Fuel Tank Mass: 1183.703

Pressure Tank Mass: 0

Total Mass: 4736.168

OTV PROPELLANT CAPACITY (kg):

Total LOX Capacity: 67117.19
LOX Carried for OTV: 50765.56



LUX Carried tor Lander: 16351.63

Additional LOX Storage Capability for Return Trip:
Fuel Capacity for OTV: 9230.102

Fuel Capacity Carried for Lander: 2973.024

Total Propellant Capacity: 59995.66

Percent of return trip LOX from LSB: 0
Percent of return trip Fuel from LSB: 0
Payload to LSB: 10000

Return Payload Capability: 10000

Mass Fraction: .926834
——————————————— LANDER DESIGN---—-—emmmmme e
LANDER ENGINE DATA:

Isp: 470

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg):
LOX - Hydrogen engine with MR: 5.5
LANDER MASS (kg):

Dry Mass: 1030

Landing Gear Mass: 1615.264

LOX Tank Mass: 65.40652

Fuel Tank Mass: 288.3833
Pressure Tank Mass: 0

Total Mass: 2999.054

LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: 16351.63

Fuel Capacity: 2973.024

Total Propellant Capacity: 19324.65
Percent of Lander LOX supplied from LSB: 0
Percent of Lander Fuel supplied from LSB:
‘Payload to LSB: 10000

Liftoff Payload: 10000

Mass Fraction: .8656561

This data has been stored in a file called:

0
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KH / O OTV & LANDER
Isp = 470. sec
LLOX AVAILABLE
10 MT PAYLOAD

15% AEROBRAKE
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RUN

Do you wish to create a data file? [Y]:Y

What do you wish to call the data file:E2.DAT

Do you wish to use an aerobrake? [Y]:Y

Enter the aerobrake mass percent:l5

Do you wish to use 2 separate vehicles? [Y]:Y

Enter Isp for OTV and for Lander:470,470

Enter OTV mass kg (NOT including tanks):840

Enter Lander mass kg (NOT including tanks and landing gear):
840

Enter the maximum payload for OTV & for Lander:10000,10000
Enter the O/F mixture ratio for the OTV & for the Lander:5.5,5.5
Enter the number of engines & engine thrust for the 0TV:2,33361
Enter mass for each engine & its thrust structure for OTV:95
Enter the number of engines & engine thrust for the Lander:2,33361
Enter mass for each engine & its thrust structure for Lander:95
A) LOX - HYDROGEN

B) LOX - ALUMINUM

C) LOX - MMH

D) LOX - SILANE

E) LOX - ALUMINIZED HYDROGEN

Choose the type of engine to be used for the OTV & Lander:A,A

Do you wish to use lunar propellants? [Y]:Y

Enter the percent of fuel & of oxidizer from Moon for Lander:
0,100

Enter the percent of fuel & of oxidizer from Moom for OTV:
0,100

Should the ammount of Lunar LOX returned be the driving factor
for the vehicle design? (Y/N):N
Enter the maximum number of engines allowed for the Lander:2

The Lander liftoff payload capability is: 10000

This is a two vehicle configuration which uses Lunar propellants.
The OTV travels to LLO carrying a payload and propellant -
for the Lander. The Lander makes 1 round-trip(s) from LSB to
LLO. It carries the OTV payload to LSB and delivers Lunar
propellant to the OTV. After 1 Lander trip(s), the OTV

departs for LEO, loaded with Lunar propellants.

LUNAR LOX LOADED ONTO OTV AT LSB: 9900
LUNAR LOX USED BY OTV: 2508.797

LUNAR FUEL USED BY OTV : 0

LUNAR LOX RETURNED= 7391.203

LEO~BASED LOX BURNED: 21085.68
----------------- OTV DESIGN-=-——mm——mmmmm e

OTV ENGINE DATA:

Isp: 470
Number of engines: 2
Thrust per engine (N): 33361



Mass of each engine & its thrust structure (kg): 95

LOX - Hydrogen engine with MR: 5.5

OTV MASS (kg):

Dry Mass: 1030

Aerobrake Mass: 1681.109

LOX Tank Mass: 84.34272

Fuel Tank Mass: 706.0241

Pressure Tank Mass: 0

Total Mass: 3501.476

OTV PROPELLANT CAPACITY (kg):

Total LOX Capacity: 21085.68

LOX Carried for OTV: 21085.68

LOX Carried for Lander: 0

Additional LOX Storage Capability for Return Trip: 0

Fuel Capacity for OTV: 4289.905

Fuel Capacity Carried for Lander: 2988.693

Total Propellant Capacity: 25375.59

Percent of return trip LOX from LSB: 100

Percent of return trip Fuel from LSB: 0

Payload to LSB: 10000

Return Payload Capability: 10000

Mass Fraction: .8787454

——————————————— LANDER DESIGN----------=—~~—-—

LANDER ENGINE DATA:

Isp: 470

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95
5.5

LOX - Hydrogen engine with MR:

LANDER MASS (kg):

‘Dry Mass: 1030

Landing Gear Mass: 1620.72
LOX Tank Mass: 65.75126
Fuel Tank Mass: 289.9033
Pressure Tank Mass: 0

Total Mass: 3006.374

LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: ' 16437.82
Fuel Capacity: 2988.693

Total Propellant Capacity: 19426.51



Percent of Lander LOX supplied from LSB:
Percent of Lander Fuel supplied from LSB:

Payload to LSB: 10000
Liftoff Payload: 10000
Tank Structure for Refueling OTV:

Mass Fraction: .8659836

This data has been stored in a file called:

100

100
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H/ O OTV & LANDER
Isp = 470 sec
NO LUNAR PROPELLANTS AVAILABLE
20 MT PAYLOAD

15% AEROBRAKE
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RUN
Do you wish to create a data file? [Y]:Y
What do you wish to call the data file:F1.DAT
Do you wish to use an aerobrake? [Y]:Y
Enter the aerobrake mass percent:15
Do you wish to use 2 separate vehicles? [Y]:Y
Enter Isp for OTV and for Lander:470,470
Enter OTV mass kg (NOT including tanks):840,
Enter Lander mass kg (NOT including tanks and landing gear):
840
Enter the maximum payload for OTV & for Lander:20000,20000
Enter the O/F mixture ratio for the OTV & for the Lander:5.5,5.5
Enter the number of engines & engine thrust for the OTV:2,33361
Enter mass for each engine & its thrust structure for OTV:95
Enter the number of engines & engine thrust for the Lander:2,33361
Enter mass for each engine & its thrust structure for Lander:95
A) LOX -~ HYDROGEN
B) LOX - ALUMINUM
C) LOX - MMH
D) LOX ~ SILANE
E) LOX ALUMINIZED HYDROGEN
Choose the type of engine to be used for the OTV & Lander:A,A

Do you wish to use lunar propellants? [Y]:N
Enter the maximum number of engines allowed for Lander:3

This is a two vehicle configuration which does not use

Lunar propellants. The OTV travels from LEO to LLO, carrying
a payload and all of the propellant needed by the Lander.

The Lander makes one round trip from LSB to LLO, carrying

the OTV payload to LSB and delivering a payload from LSB to
the OTV. The OTV then returns to LEO.

————————————————— OTV DESIGN-~—-—cmem e
OTV ENGINE DATA:

Isp: 470

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 5.5
OTV MASS (kg):

Dry Mass: 1630

Aerobrake Mass: 4277.554

LOX Tank Mass: 491.4358

Fuel Tank Mass: 2166.785

Pressure Tank Mass: 0

Total Mass: 7965.775

OTV PROPELLANT CAPACITY (kg):



Total LOX Capacity. 122859

LOX Carried for OTV: 93654.44

LOX Carried for Lander: 29204.52

Additional LOX Storage Capability for Return Trip: 0
Fuel Capacity for OTV: 17028.08

Fuel Capacity Carried for Lander: 5309.912

Total Propellant Capacity: 110682.5

Percent of return trip LOX from LSB: 0

Percent of return trip Fuel from LSB: 0

Payload to LSB: 20000

Return Payload Capability: 20000

Mass Fraction: .9328623

LANDER ENGINE DATA:

Isp: 470

Number of engines: 3

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 5.5

LANDER MASS (kg):

Dry Mass: 1125

Landing Gear Mass: 2780.818
LOX Tank Mass: 116.8181
Fuel Tank Mass: 515.0615
Pressure Tank Mass: 0

Total Mass: 4537.698

LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: 29204.52

Fuel Capacity: 5309.912

Total Propellant Capacity: 34514.43

Percent of Lander LOX supplied from LSB: 0

Percent of Lander Fuel supplied from LSB: 0
Payload to LSB: 20000

Liftoff Payload: 16595.92

Mas's Fraction: ‘ .8838041

This data has been stored in a file called: F1.DAT
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LLOX AVAILABLE
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RUN

Do you wish to create a data file? [Y]:Y

What do you wish to call the data file:F2.DAT

Do you wish to use an aerobrake? [Y]:Y

Enter the aerobrake mass percent:15

Do you wish to use 2 separate vehicles? (Y]:Y

Enter Isp for OTV and for Lander:470,470

Enter OTV mass kg (NOT including tanks):840

Enter Lander mass kg (NOT including tanks and landing gear):
840

Enter the maximum payload for OTV & for Lander:20000,20000
Enter the O/F mixture ratio for the OTV & for the Lander:5.5,5.5
Enter the number of engines & engine thrust for the 0OTV:2,33361
Enter mass for each engine & its thrust structure for OTV:95
Enter the number of engines & engine thrust for the Lander:2,33361
Enter mass for each engine & its thrust structure for Lander:95
A) LOX - HYDROGEN -
B) LOX - ALUMINUM

C) LOX - MMH

D) LOX - SILANE

E) LOX - ALUMINIZED HYDROGEN -
Choose the type of engine to be used for the OTV & Lander:A,A

Do you wish to use lunar propellants? [Y]:Y

Enter the percent of fuel & of oxidizer from Moon for Lander:
0,100

Enter the percent of fuel & of oxidizer from Moon for OTV:

0,100

Should the ammount of Lunar LOX returned be the driving factor

for the vehicle design? (Y/N):N
Enter the maximum number of engines allowed for the Lander:3

The Lander liftoff payload capability is: 16497.96
Do you wish to change the engine constraint to allow a

larger payload? (Y/N):N

This is a two vehicle configuration which uses Lunar propellants.
The OTV travels to LLO carrying a payload and propellant

for the Lander. The Lander makes 1 round-trip(s) from LSB to
LLO. It carries the OTV payload to LSB and delivers Lunar

. propellant to the OTV. After 1 Lander trip(s), the OTV

departs for LEO, loaded with Lunar propellants.

LUNAR LOX LOADED ONTO OTV AT LSB: 16332.98
LUNAR LOX USED BY OTV: 4022.366

LUNAR FUEL USED BY OTV : 0

LUNAR LOX RETURNED= 12310.61

LEO-BASED LOX BURNED: 38833.12
----------------- OTV DESIGN-=-m--=-—mmm—mm e

OTV ENGINE DATA:
Isp: 470



Number of engines: 2
Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg):

LOX - Hydrogen engine with MR: 5.5

OTV MASS (kg):

Dry Mass: 1030

Aerobrake Mass: 2696.027
LOX Tank Mass: 155.3325
Fuel Tank Mass: 1272.312
Pressure Tank Mass: 0

Total Mass: 5153.672

OTV PROPELLANT CAPACITY (kg):

Total LOX Capacity: 38833.,12

LOX Carried for OTV: 38833.12

LOX Carried for Lander: 0

Additional LOX Storage Capability for Return Trip:
Fuel Capacity for OTV: 7791.907

Fuel Capacity Carried for Lander: 5324.711

Total Propellant Capacity: 46625.03

Percent of return trip LOX from LSB: 100
Percent of return trip Fuel from LSB: 0
Payload to LSB: 20000

Return Payload Capability: 20000

Mass Fraction: .9004673

LANDER ENGINE DATA:

Isp: 470
Number of engines: 3
Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg):

LOX ~ Hydrogen engine with MR: 5.5

"LANDER MASS (kg):

Dry Mass: 1125

Landing Gear Mass: 2780.818
LOX Tank Mass: 117.1437
Fuel Tank Mass: 516.497
Pressure Tank Mass: 0

Total Mass: 4539.459

LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: 29285.92
Fuel Capacity: 5324.711

95

95
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Total Propellant Capacity: 34610.63

Percent
Percent

Payload
Liftoff

of Lander LOX supplied from LSB:

of Lander Fuel supplied from LSB:

to LSB: 20000
Payload: 16497.,96

Tank Structure for Refueling OTV:

Mass Fraction: .8840498

This data has been stored in a file called:

100

164.9796



H/ O OTV & LANDER
Isp = 470 sec
NO LUNAR PROPELLANTS AVAILABLE
15.9 MT PAYLOAD

NO AEROBRAKE
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C:\basprog>RUN

Do you wish to create a data file? [Y]:Y

What do you wish to call the data file:NOBRK.DAT

Do you wish to use an aerobrake? [Y]:N

Do you wish to use 2 separate vehicles? [Y]:Y

Enter Isp for OTV and for Lander:470,470

Enter OTV mass kg (NOT including tanks):840

Enter Lander mass kg (NOT including tanks and landing gear):

840

Enter the maximum payload for OTV & for Lander:15873,8973

Enter the O/F mixture ratio for the OTV & for the Lander:5.5,5.5
Enter the number of engines & engine thrust for the 0TV:2,33361
Enter mass for each engine & its thrust structure for OTV:95
Enter the number of engines & engine thrust for the Lander:2,33361
Enter mass for each engine & its thrust structure for Lander:95
A) LOX - HYDROGEN

B) LOX - ALUMINUM

C) LOX - MMH

D) LOX - SILANE

Choose the type of engine to be used for the OTV & Lander:A,A

Do you wish to use lunar propellants? [Y]:N
Enter the maximum number of engines allowed for Lander:2

This is a two vehicle configuration which does not use

Lunar propellants. The OTV travels from LEO to LLO, carrying
a paylcad and all of the propellant needed by the Lander.

The Lander makes one round trip from LSB to LLO, carrying

the OTV payload to LSB and delivering a payload from LSB to
the OTV. The OTV then returns to LEO.

————————————————— OTV DESIGN--—---=-c—mmm oo
OTV ENGINE DATA:

Isp: 470

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 5.5
OTV MASS . (kg):

Dry Mass: 1030

Aerobrake Mass: 0

LOX Tank Mass: 548.5174

Fuel Tank Mass: 2418.463

Pressure Tank Mass: 0

Total Mass: 3996.981



OTV PROPELLANT CAPACITY (kg):

Total LOX Capacity: 137129.4
LOX Carried for OTV: 116353.5
LOX Carried for Lander: 20775.86
Additional LOX Storage Capability for Return Trip:
Fuel Capacity for OTV: 21155.18
Fuel Capacity Carried for Lander: 3777.43

Total Propellant Capacity: 137508.7

Percent of return trip LOX from LSB: 0
Percent of return trip Fuel from LSB: 0

Payload Capability to LSB: 15873
Return Payload Capability: 15873

Mass Fraction: .9717539

LANDER ENGINE DATA:

Isp: 470

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg):

LOX - Hydrogen engine with MR: 5.5

LANDER MASS (kg):

Dry Mass: 1030

Landing Gear Mass: 1841.305
LOX Tank Mass: 83.10345
Fuel Tank Mass: 366.4107
Pressure Tank Mass: 0

Total Mass: 3320.819

LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: 20775.86

Fuel Capacity: 3777.43

Total Propellant Capacity: 24553.29

Percent of Lander LOX supplied from LSB: 0
Percent of Lander Fuel supplied from LSB:
Maximum Payload Capability: 8973
Liftoff Payload Capability: 8973
Mass Fraction: .8808637

This data has been stored in a file called:

95

NOBRK.DAT
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H/ O OTV & LANDER
Isp = 470 sec
LLOX AVAILABLE
15.9 MT PAYLOAD

NO AEROBRAKE

Astronautics CORPORATION OF AMERICA —TECHNOLOGY CENTER



LIST RUN

Do you wish to create a data +ile? [Y3:VY

What do you wish to call the data file:NOBRKZ2.DAT

Do you wish to use an aerobrake? [YI:N

Do you wish to use 2 separate vehicles? [Yl:VY

Enter Isp for 0TV and for Lander:470,470

Ent2r OTY mass kg (NOT including tanks):B840

Enter Lander mass kg (NOT including tanks and landing gear):
830 .
Enter the maximum payload for 0TV % for Lander:13373,8572
Enter tha O/F mixture ratic for the OTV % for the Lander:S.S
Enter the number of enginees !—angine thrust for the OTV:2, 2773
Entzr mass for each 2ngin2 % its thrust structure faor 0TV:95
Enter the number of_engines % engine thrust for the Lander:2,33T61

Enter mass for each engine % its thrust structure for Lander:5S
A) LOX - HYDROGEN

B) LOX - ALUMINUM

C) LCX - MMH

D) LOX¥ - SILANME

€) LOX - ALUMINIZIED HYCDRGOGZEM

Chocse the type of engine to be used for the 0TV % Lander:A”,A

Do you wish to usze lunar propellants? (Y1:Y

Enter the percent of fuel % of aoxidizer from Moon for Lander:
Q o1 (a1

Enter the percent of fuel % of oxidizer from Moon for 0OTV:
0,100

Enter the maximum number of engines allowed for the Lander:2

The Lander liftoff payload capability is: 8972

The Lander does not have the lift capability to return
a manned capsule and the propellant nesded for the OTV.
Enter a O if you wish to increase the number of Landsr
trips. Entzr a 1l if ycu wish ta increase the numbar of
LLander enqgines.O

This is a twa vehicle configuration which useas Lunar propeallants.
The OTY travels to LLO carrying a payload and prapellant

far the Lander. The Lander makes I round-trip(s) from LSE to
LLO. It carries the OTVY payload to LSE and delivers Lunar
praopellant to the OTV. After I Lander trip(s), the QTV

depsarts for LEQD, lcaded with Lunar propesllants.

LUNAR LOX LOADED ONTO OTV AT LSB: 26647 .31
LUNAR LGX USED BY OTV: 16078, 98
LUNAR FUEL USED EY OTV : 0
LUNAR LOX RETUFRMED= 10612.85
LES-BASED LOX BURNELD: Z54T6.17
OTY DESIGM=——————m————m———m

o7, ENGINE DRTA:
len: aTo
Mumber of enginss: 2
Thruszt per engine (N):
of =2o0h =aginz: % Lt
1

LOY - Hvdragasn sngine w

sl
H \ stiruchuwee b
MR <.

LY
<)
“

QTV MASS (k)

Dry Mass: 1020

Aercbrake Mass: 0

LGX Tank Mass: 131.7847
Fuel Tanbk Mass: 1E80.136
Fressure Tank Mass: 0

Total Mass: a7%1.8%

ORIGINAL PAGE IS
OF POOR QUALITY
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QTV PROPELLANT CAFACITY (kg):

Total LOX Capacity: 35336.17
LOX Carried for QTV: 35436.17
LLOX Carried for Lander: o]

Additional LOX Storage Capability for
Fuel Capacity for 0OTV: 9358.7351

Fuel Capacity Carried for Lander:
Total Fropellant Capacity: 44794,.92

Fercent of return trip LOX from LSBE:
Fercent of return trip Fuel from LSB:

Fayload to LSB: 1887
Return Fazyvload Capability: 18877
Mass Fraction: . 9421224

——————————————— LANDER DESIGN

Return Trip: o}

6931.408

100

LANDER ENGIME DATA:

Isp: 470

Number of engines: 2

Thrust per engine (N): 3T361

Mass of each engine % its thrust structure (kg): 9
LOX - Hydrogen engine with MR: S.S

LANDER MASS (kg):

Dry Mass: 1030

tanding Gear Mass: 1844.201

LOX Tenk Mass: 3.4128

Fusl Tank Maes: JETTTAS

Fressure Tank Mass: O

Total Mass: I327.388

LANMDER FROFELLANT CAFACITY (kg):

LOX Capacity: 20853.2

Fuel Capacity: I7F1.49

Total Fropellzant Capacity: 24534,89

Ferc2nt of Lander LOX supplied from LSE: 100

Fercent of Lander Fuel supplied from LSE: ()
fayload to LSE: ' 15873

Liftoff Fayload: 8973

Tank Structure for Refueling oTV: 89.72999

Mass Fraction: .88104561

This data has been stored in a file callad: NOEFREZ.DAT
Ok

ORIGINAL PAGE IS
OF POOR QUALITY
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H/ O OTV & LANDER
Isp = 470 sec
NO LUNAR PROPELLANTS AVAILABLE
15.9 MT PAYLOAD

18% AEROBRAKE
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RUN

Do you wish to create a data file? [Y]:Y

What do you wish to call the data file:18BRK.DAT

Do you wish to use an aerobrake? [Y]:Y

Enter the aerobrake mass percent:18

Do you wish to use 2 separate vehicles? [Y]:Y

Enter Isp for OTV and for Lander:470,470

Enter OTV mass kg (NOT including tanks):840,

Enter Lander mass kg (NOT including tanks and landing gear):
840 -

Enter the maximum payload for OTV & for Lander:15873,8973

Enter the O/F mixture ratio for the OTV & for the Lander:5.5,5.3
Enter the number of engines & engine thrust for the 0TV:2,23361
Enter mass for each engine & its thrust structure for OTV:93
Enter the number of engines & engine thrust for the Lander:2,33361
Enter mass for each engine & its thrust structure for Lander:95
A) LOX - HYDROGEN

B) LOX - ALUMINUM

C) LOX - MMH

D) LOX - SILANE

Choose the type of engine to be used for the OTV & Lander:4A,4

Do you wish to use lunar propellants? [Y]:N
Enter the maximum number of engines allowed for Lander:2

This is a two vehicle configuration which does not use

Lunar propellants. The OTV travels from LEO to LLO, carrying
a payload and all of the propellant needed by the Lander.

The Lander makes one round trip from LSB to LLO, carrying

the OTV payload to LSB and delivering a payload from LSB to
the OTV. The OTV then returns to LEO.

————————————————— OTV DESIGN----—mmmmme e
OTV ENGINE DATA:

Isp: 470

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 5.5
OTV MASS (kg):

Dry Mass: 1030

Aerobrake Mass: 4254,073

LOX Tank Mass: 373.4096

Fuel Tank Mass: 1646.398

Pressure Tank Mass: 0

Total Mass: 7303.881

ORIGINAL  PAGE IS

OF
OTV PROPELLANT CAPACITY (kg): PGOR QUALITY
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Total LOX Capacity: 93352.47

LOX Carried for OTV: 72576.61

LOX Carried for Lander: 20775.86

Additional LOX Storage Capability for Return Trip: 0]
Fuel Capacity for OTV: 13195.75

Fuel Capacity Carried for Lander: 3777.43

Total Propellant Capacity: 85772.36

Percent of return trip LOX from LSB: 0

Percent of return trip Fuel from LSB: 0

Payload Capability to LSB? 15873
Return Payload Capability: 15873

Mass Fraction: .9215281

--------------- LANDER DESIGN-=m—m—mmmmmmmmem

LANDER ENGINE DATA:

Isp: 470

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 5.5

LANDER MASS (kg):

Dry Mass: 1030

Landing Gear Mass: 1841.305
LOX Tank Mass: 83.10345
Fuel Tank Mass: 366.4107
Pressure Tank Mass: 0

Total Mass: 3320.819

LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: 20775.86

Fuel Capacity: 3777.43

Total Propellant Capacity: 24553.29

Percent of Lander LOX supplied from LSB: 0

Percent of Lander Fuel supplied from LSB: 0
Maximum Pavload Capability: 8973

Liftoff Payload Capability: 8973

Mass Fraction: .8808637

This data has been stored in a file called: 18BRK.DAT
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H/ O OTV & LANDER
Isp = 470 sec
LLOX AVAILABLE
15.9 MT PAYLOAD

18% AEROBRAKE
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RUN

Do you
What d
Do you
Enter
Do you
Enter
Enter
Enter
1070
Enter
Enter
Ente-
Enter
Enter
Entar
A) LOX
By LZX
€ LI
D) T«

Checose

Dc ycu
Enter
0,100
Enter
0,100

Shculd
for th

Enter

The La
Dec yocu
larger
The La

ORIGINAL PAGE IS
OF PCOR QUALITY

wish to create a data file? L[YJ:VY
O you wish to call the data file:18BRKZ.DAT
wish to use an aerabrake? (Y1:VY
the aerobrake mass percent:18
wish to use 2 separate vehicles? [Yl:¥
lsp for 0TV and for Lander:1020470,370
0TV mass kg (NOT including tanks):10T0 .
Lander mass kg (NOT including tanis and landing gear):

the maximum payload for BTV % fcr Lander:1S87>,15877

the O/F mivture ratio for the 0TV % for the Lander:S.5.5.%5
the number of engines % engine *“hrust for the OTV:2,I3761
mass for each engine % its thrust structure for 0TV:9%

the number of engines % englne Zhrust for the Lander:-.330461
mass for each engine % its thruet structure for Lander:5S

- HYDROGEN

- ALUMINUM

- MMH

- SILANE

the tvpe of engine to be used for the OTY and Lancer:f, A

wicgh to use lunar propellante™ [V3I:
the percent aof fuel % of o

tidizer from Moon for Lander:

the percent of fuel & of oxidizer from Moon for OTV:

the ammount of Lunar LOX returned be the driving fachor
e vehicle design? (Y/N):N

the maximum number of engines allcwed for the Lander:Z2

nder liftoff payload capability is: 89772

wish to change the engine constraint to allow a
payload? (Y/N):N

nder does not have the lift capability to return

a manned capsule and the propellant needed for the OTV.

Enter
trips.
Lander

a 0 if you wish to jincrease the number of Lander

Enter a 1 if you wish to increase the number of
engines.v

Thie is a two vehicle con¥iguration which uses Luner propellants,
The QOTV travels to LLO carrving a payload and propellant

for th
LLO.

propel
depart

LUINEF
LUNER
LUNAR
LUNAR
LET-B2

e Lander. The Lander makes 2 round—trip{(s) from LSE to
It carries the 0TV pavyleoad to LSE and delivere Lunar
lant to the OTV. After 2 Lander trip(s), the 0TV

s for LEO, loaded with Lunar propellantes.

LOX LRADED ONTO OTY AT LSH: 177646.54
LOX USED BY OTY: A3A0, TET

FUEL USED BY 0OTV : [}

LOX RETURNED=
SED LOX RURNED:

———————————————— ATV MEFSTAM e~ e

0TV EMGIME DATA:

Isp: 470

(Numzer of engines: 2

Thrust per engine (MN): ITZ61 -
Macs of each engine % its thrust structure (kg): S
LOX - Hydrogen enging with MR: S.S

OTV MASS (kg):

Drv Mass: 1030

Lerzhbrake Mass: ZST0.955
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LOX Tank Mass: +39.271S
Fuel Tank Mass: 1212.698
Fressure Tank Mass: [o]

Total Mass: 952,985

OTV FROPELLANT CAPACITY (kg):

Total LOX Capacity: 34832.868

LOX Carried for 0OTV: 34832.88

LOX Carried for Lander: 0

Additional LOX Storage Capability for Feturn Trip: Q
Fuel Capacity far OTV: 7130,.589

Fuel Capacity Carried for Lander: 761,439
Total Propellant Capacity: 41977.47

Fercent of return trip LOY from LEZ: 100
Fercent of return trip Fuel from LSE: [s]
Fayload Capability to LSE: 15877

Return Fayload Capability: 12877

Mass Fraction: .B7E7851
——————————————— LANDER DESIGN-=~--—==——=me——————

LANDER ENGINE DATA:

Isp: 470
Number of engines:

Thrust per engine (N): 61

Mass of each engine % its thrust structure (kg): 95
LOX - Hydrogen engine with MR: S.5

LANDER MASS (kgl:

Dry Mass: 10Z0

Landing Gear Mass: 1844, 201

LOX Tank Mass: 83.4128

Fuel Tank Mass: I67.774¢6

Fressure Tank Mass: O

Total Mass: 3Z27.388

LANDER FROFELLANT CAFACITY (kgl):

LOX Capecity: 20857, 2

Fuel Capacity: I791.45%9

Total Fropellant Capacity: 24545, 69

Fercent of Lander LOX supplied from LSE: 100

Percent of Lander Fuel supplied from LSRB: (W]
Maximum Fayload Capability: .
Liftoff Payload Cepability:

Tank Structure for Refueling OTV: 89.72959

'Mess Fraction: JeR10ae

15

This data has been stored in a file called:
Ok

ORIGINAL pp
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"H/ O OTV & LANDER
Isp = 470 sec
NO LUNAR PROPELLANTS AVAILABLE
15.9 MT PAYLOAD

20% AEROBRAKE

Astronautiw CORPORATION OF AMERICA — TECHNOLOGY CENTER
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RUN

Do you wish to create a data file? [Y]:Y

What do you wish to

call the data file:20BRK.DAT

Do you wish to use an aerobrake? [Y]:Y

Enter the aerobrake

mass percent:20

Do you wish to use 2 separate vehicles? [Y]:Y

Enter Isp for OTV and for Lander:470,470

Enter OTV mass kg (NOT including tanks):840

Enter Lander mass kg (NOT including tanks and landing gear):

840

Enter the maximum payload for OTV & for Lander:15873,8973
Enter the O/F mixture ratio for the OTV & for the Lander:5.5,5.5

Enter the number of
Enter mass for each
Enter the number of
Enter mass for each
A) LOX - HYDROGEN
B) LOX - ALUMINUM
C) LOX - MMH

D) LOX - SILANE

engines & engine thrust for the 0TV:92,33361
engine & its thrust structure for OTV:95
engines & engine thrust for the Lander:2,33361
engine & its thrust structure for Lander:95

Choose the type of engine to be used for the OTV & Lander:A,A

Do you wish to use lunar propellants? [Y]:N
Enter the maximum number of engines allowed for Lander:2

This is a two vehicle configuration which does not use

Lunar propellants.

The OTV travels from LEO to LLO, carrying

a payload and all of the propellant needed by the Lander.
The Lander makes one round trip from LSB to LLO, carrying
the OTV payload to LSB and delivering a payload from LSB to
the OTV. The OTV then returns to LEO.

OTV ENGINE DATA:
Isp: 470

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 5.5

OTV MASS (kg):

Dry Mass: . 1030

Aerobrake Mass: 4854.119

LOX Tank Mass: 377.9398

Fuel Tank Mass: 1666.371

Pressure Tank Mass: 0

Total Mass: 7928.43

OTV PROPELLANT CAPACITY (kg):



Total LOX Capacity: 94484 .96
LOX Carried for OTV: 73709.1
LOX Carried for Lander: 20775.86 .
Additional LOX Storage Capability for Return Trip: o
Fuel Capacity for OTV: 13401.65

Fuel Capacity Carried for Lander: X743

Total Propellant Capacity: 87110.75

Percent of return trip LOX from LSB: 0

Percent of return trip Fuel from LSB: 0

Payload Capability to LSB: 15873

Return Payload Capability: 15873

Mass Fraction: .9165772

——————————————— LANDER DESIGN--memccm e

LANDER ENGINE DATA:

Isp: 470

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 5.5

LANDER MASS (kg):

Dry Mass: 1030

Landing Gear Mass: 1841.305

LOX Tank Mass: 83.10345

Fuel Tank Mass: 366.4107

Pressure Tank Mass: 0

Total Mass: 3320.819

LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: 20775.86

Fuel Capacity: 3777.43

Total Propellant Capacity: 24553.29

Percent of Lander LOX supplied from LSB: 0

Perceat of Lander Fuel supplied from LSB: 0
Maximum Payload Capability: 8973

Liftoff Payload Capability: 8973

Mass Fraction: .8808637

This data has been stored in a file called: 20BRK.DAT
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H/ O OTV & LANDER
Isp = 470 sec
LLOX AVAILABLE

15.9 MT PAYLOAD

20% AEROBRAKE
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ORIGINAL PAGE 1
()F: FM)()F‘ (J‘JI\LIT\{

Do you wish to create a data file? (Y1:Y

What do you wish to call the data file:20BRK2.FDAT
Do you wish to use an aerobrake? (YJ:VY

Enter the aerobrake mass percent:20

Do you wish to use 2 separate vehicles? (Yl:Y
Enter Isp for 0TV and for Lander:470,470

Enter OTV mass kg (NOT including tanks):1030 ‘
Enter Lander mass kg (NOT including tanks and landing gear):
10320

Enter the maximum payload for-0TY & for tLander:15873,1%8773

Enter the O/F mixture ratio for the 0TV % for the Lander:5.5,5.5
Enter the number_of engines % engine thrust for the 0TV:2,33361
Enter mass for each engine % its thrust structure for OTV:99
Enter the number of engines % engine thrust for the Lander:2,33761
Enter mass for each engine % its thrust structure for Lander:9%

A) LOX - HYDROGEN

B) LOX - ALUMINUM

C) LOX - MMH

D) LOX - SILANE

Choose the type of engine to be used for the 0TV and Lander:A.A

Do you wish to use lunar propellants? (YJ:Y
Enter the percent of fuel &% of oxidizer from Moon for Lander:
0,100

Enter the percent of fuel % of oxidizer from Moon for OTV:
0,100

Should the ammount of Lunar LOX returned be the driving factor
for the vehicle design? (Y/N):N
Enter the maximum number of engines allowed for the Lander:2

The Lander liftoff payload capability is: 8973

Do you wish to change the engine constraint to allow a
larger payload? (Y/N):N

The tander does not have the lift capability to return
a manned capsule and the propellant needed for the OTV.
Enter a Q0 if you wish to increase the number of Lander
trips. Enter a 1 if you wish to increase the number of
Lander engines.O

This is a two vehicle configuration which uses Lunar propellants.
The OTV travels to . LLO carrying a payload and propellant

for the Lander. The Lander makes 2 round-trip(s) from LSRR to
LLO. It carries the OTV paylcad to LSB and delivers lLunar
propellant to the 0TV, After 2 Lander trip(s), the OTV

departs for LEO, loaded with Lunar propellants.

LUNAR LOX LOADED ONYO OTV AT LSE: 17766.33
LUNAR LOX USED BY OTVY: 4532.885

LUMNAR FUEL USED BY OQTV : O

LUNAR LOX RETURNED= 12277, 68

LED-BASED LOX EURNED: I5468. 53

0TV ENGINE DATA:

Isp: 470
Number of engines: 2
Thrust per engine (N): T3T61

ot

wmo

Mass of each engine % its thrust structure
LOX - Hydrogen engine with MF:

9
4]

u ~

OTV MASS (kg):

Dry Mass: 10320
fAarabraka Ma2es: 039,625



D-84 LOX Tank Mass: 131.8741
Fuel Tank Mass: 1225.54
Pressure Tank Mass: (o]
Total Mass: 6447.038

0TV PROFELLANT CAPACITY (kg): -

Total LOX Capacity: 25468.53
LOX Carried for OTV: 354468.53
LOX Carried for Lander: (o]
Additional LOX Storage Capability for Return Trip: o
Fuel Capacity for 0TV: 7272.979
Fuel Capacity Carried for Lander: €361. 449
Total Fropellant Capacity: 42731.51
Fercant of return trip LOX from LSE: 100G
Fercent of return trip Fuel from LSH: [} .
Payload Capability to LSB: 158773
FReturn Fayload Capability: 158773 -
Mass Fraction: . B4689%21
——————————————— LANDER DESIGN-=-=—m=m———c———=
LANDER ENGINE DATA:
Isp: 470
Number of engines:
Thrust per engine (N): 261
Mass &f each engine % its thrust structure (kg): S
LOX - Hydrogen engine with MR: 5.5
LLANDER MASS (kg):
Dry Mass: 1030
Landing Gear Mase: 1844, 201
LOX Tank Mass: 87.4128
Fuel Tenk Mass: T67.7744
Fressure Tank Mass: (]
Total Mass: 2727.388
LANDER FROFELLANT CAFACITY (kg):
LOX Capacity: 20883,2
Fuel Capacity: 3791.49
Total Fropellant Capacity: 245644, 69
Percent of Lander LOX supplied from LSE: 10Q
Fercent of lLander Fuel supplied from LSE: (4]
Maximum Fayload Capability: 15877
Liftoff Fayload Capability: 8977 .
Tank Structure for Refueling OTV: 89.72%999
Mass Fraction: SB210as1
This data has been stored in a file called: 2OBREZ.DAT
o

ORIGINAL PAGE 15
OF POOR QUALITY
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H/ O OTV & LANDER
Isp = 470 sec
NO LUNAR PROPELLANTS AVAILABLE
15.9 MT PAYLOAD

25% AEROBRAKE
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RUN

Do you wish to create a data file? [Y]:Y

What do you wish to call the data file:25BRK.DAT

Do you wish to use an aerobrake? [Y]:Y

Enter the aerobrake mass percent:25

Do you wish to use 2 separate vehicles? [Y]:Y

Enter Isp for OTV and for Lander:470,470

Enter OTV mass kg (NOT_including tanks) 840

Enter Lander mass kg (NOT 1nclud1ng tanks and landing gear)

840

Enter the maximum payload for OTV & for Lander:15873,8973

Enter the O/F mixture ratio for the OTV & for the Lander:5.5,5.3
Enter the number of engines & engine thrust for the OTV:2,33361
Enter mass for each engine & its thrust structure for OTV:95
Enter the number of engines & engine thrust for the Lander:2,33361
Enter mass for each engine & its thrust structure for Lander:95
A) LOX - HYDROGEN

B) LOX - ALUMINUM

C) LOX - MMH

D) LOX - SILANE

Choose the type of engine to be used for the OTV & Lander:,AA,A

Do you wish to use lunar propellants? [Y]:N
Enter the maximum number of engines allowed for Lander:2

This is a two vehicle configuration which does not use

Lunar propellants. The OTV travels from LEO to LLO, carrying
a payload and all of the propellant needed by the Lander.

The Lander makes one round trip from LSB to LLO, carrying

the OTV payload to LSB and delivering a payload from LSB to
the OTV. The OTV then returns to LEO,.

————————————————— OTV DESIGN--———-mmmmm e
OTV ENGINE DATA:
Isp: 470
Number of engines: 2
Thrust per engine (N): 33361
Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 5.5
OTV MASS (kg):
Dry Mass: 1030
Aerobrake Mass: 6505.939
LOX Tank Mass: 390.4098
- Fuel Tank Mass: 1721.352
Pressure Tank Mass: 0
Total Mass: 9647.701

OTV PROPELLANT CAPACITY (kg):

N B W |
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Total LOX Capacity: 97602.46

LOX Carried for OTV: 76826.6

LOX Carried for Lander: 20775.86

Additional LOX Storage Capability for Return Trip: 0
Fuel Capacity for OTV: 13968.47

Fuel Capacity Carried for Lander: 3777.43

Total Propellant Capacity: 90795.06

Percent of return trip LOX from LSB: 0]
Percent of return trip Fuel from LSB: 0
Payload Capability to_LSB: 15873
Return Payload Capability: 15873

Mass Fraction: .9039482

LANDER ENGINE DATA:

Isp: 470

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 5.5

LANDER MASS (kg):

Dry Mass: 1030

Landing Gear Mass: 1841.305
LOX Tank Mass: 83.10345
Fuel Tank Mass: 366.4107
Pressure Tank Mass: 0

Total Mass: 3320.819

LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: 20775.86

Fuel Capacity: 3777.43

Total Propellant Capacity: 24553.29

Percent of Lander LOX supplied from LSB: 0

Percent of Lander Fuel supplied from LSB: 0
Maximum Payload Capability: 8973

Liftoff Payload Capability: 8973

Mass Ffaction: .8808637

This data has been stored in a file called: 25BRK.DAT
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H/ O OTV & LANDER
Isp = 470 sec
LLOX AVAILABLE
15.9 MT PAYLOAD

25% AEROBRAKE

Astronautics CORPORATION OF AMERICA — TECHNOLOGY CENTER
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RUN

Do vyou wish to create a data file? [Y1:v

What do you wish to call the data file:25BRK2.DAT
Do you wish to use an aerobrake? [Y):Y

Enter the aerobrake mass percent:2%

Do you wish to use 2 separate vehicles? (YJ:Y
Enter lsp for QTV and for Lander:470,470

Enter OTV mass kg (NOT including tanks):1030 ‘
Enter Lander mass kg (NOT including tanks and landing gear):
1030

Enter the maximum payload for DTV % for Lander: 13872, 198732

Enter the Q/F mixture ratio for the QTV % for the Lander:5.%5.%5.5
Enter the number of engines % engine thrust for the OTY:2,37I61
Enter mass for _each engine % its thrust structure for OTV:9%

Enter the number of engines % engine thrust for the Lander:2,3IT61
Enter mass for each

engine % its thrust structure for Lander:9%
A) LOX - HYDROGEN
B) LOX - ALUMINUM

Ty LOX = MMH
D) LAX - SILANE

Choose the type of engine to be used for the OTV and Lander:A,A

Do you wish to use lunar propellants? [YJ:vY

Enter the percent of fuel % of oxidicer from Moon for Lander:
0,100

Enter

the percent of fuel & of oxidizer from Moon for QTV:
0,100

Should the ammount of Lunar LOX returned be the driving factor
for the vehicle design? (Y/N):N

Enter the maximum number of engines allowed for the Lander:2

The Lander liftoff payload capability is: 8973

Po you wish to change the engine constraint to allow a
larger payload? (Y/N):N
The Lander does not have
a manned capsule and the
Enter a 0 if you wish to
trips. Enter a 1 if you
Lander engines.Q

the lift capability to return
propellant needed for the OTV,
increase the number of Lander
wish to increase the number of

This'is a two vehicle configuration which uses Lunar propellants.
The OTVY travels to LLO carrying a payload and propellant

for the Lander. The tander makes 2 round-trip(s) from LSE to
LLo.

It carries the 0OTY payload to LSE and delivers Lunar

propellant to the OTV. After 2 Lander trip(s), the OTV
departs for LEDO, loaded with Lunar propellants.

LUNAR LOX LOADED ONMTO OTV AT LSE: 17764.53
LUNAR LOX USED BY OTV: 4781. 688

LUNAR FUEL USED By OTWV = W]

LUNAR LOYX RETURMED= 12984,.8%5

{ EN-BASED LOX BUFMED: I7178.72

——— . 2 . 4 e i e OTY NEO T RN e e e

0TV ENGINE DATA:

Iap: 470

Number of engines: 2

Thrust per engine (N): 3761

Mass of each engine % its thrust structure (kg): IS
LOX - Hydrogen engine with MR: 5.5

0TV MASS (kg):

Dry Macs: 1070
Aerobrake Mass: SIT7.391
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LOX Tank Mass: +48.7149
Fuel Tank Mass: 1260, 09
Pressure Tank Mass: [v]

Total Mass: 7776.255

OTV PROFELLANT CAPACITY (kg):

Total LOX Capacity: I7178.72
LOX Carried for OTV: 37178.72
LDX Carried for Lander: 0

Additional LOX Storage Capability for
Fuel Capacity for UTV: 7629.165

Fuel Capacity Carried for Lander:

Total Fropellant Capacity: 44807.89

Fercent of return trip LOX from LSE:

Return Trip: Q

5361449

100

Fercent of return trip Fuel from LSE: (o]
Fayload Capability to LSB: 15877~
Return Fayload Capability: 15873
Mass Fraction: . 8521179
LANDER DESIGN

LANDER ENGINE DATA:

Isp: 470
Number of engines: 2
Thrust per engine (N): 33361

Mass of each engine % its thrust structure (kg): 95
LOX - Hydrogen engine with MR: S.5

LANDER MASS (kg):

Dry Mass: 1030

Landing Gear Mass: 1846, 201

LOX Tank Mass: 87.43128

Fuel Tank Mass: Z67.77484

Fressure Tank Mass: (s}

Totel Mass: 3TZ27.388

LANDER FROPELLANT CAFACITY (kg):

LOX Capacity: 20853.2

Fuel Capacity: 3791.39

Total Fropellant Capacity: 248444, 69

Fercent of Lander LOX supplied from LSE: 100

Fercent of Lander Fuel supplied from LSE: [a}
Maximum Fayload Capability: 15873

Liftoff Payload Capability: 897> 4
Tank Structure for Refueling OTV: 82.72999
' Mass Fraction: 8210461

This data has been stored in a file called: 2ERRFMI.DAT
Ok

RESTANIREE T g s, s
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H/ O OTV & LANDER
Isp = 470 sec
NO LUNAR PROPELLANTS AVAILABLE
15.9 MT PAYLOAD

30% AEROBRAKE
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RUN
Do you

wish to create a data file? [Y]):Y

What do you wish to call the data file:30BRK.DAT

Do you
Enter
Do you
Enter
Enter
Enter
840
Enter
Enter
Enter
Enter
Enter
Enter
A) LOX
B) LOX
C) LoOX
D) LOX
Choose

Do you
Enter

This i
Lunar
a payl

wish to use an aerobrake? [Y]:Y

the aerobrake mass percent:30

wish to use 2 separate vehicles? [Y]:Y

Isp for OTV and for Lander:470,470

OTV mass kg (NOT-including tanks):840

Lander mass kg (NOT including tanks and landing gear):

the maximum payload for OTV & for Lander:15873,8973
the O/F mixture ratio for the OTV & for the Lander:5.5,5.5
the number of engines & engine thrust for the 0OTV:2,33361
mass for each engine & its thrust structure for OTV:95
the number of engines & engine thrust for the Lander:2,33361
mass for each engine & its thrust structure for Lander:95
- HYDROGEN '
- ALUMINUM
- MMH
- SILANE
the type of engine to be used for the OTV & Lander:A,A

wish to use lunar propellants? [Y]:N
the maximum number of engines allowed for Lander:2

s a two vehicle configuration which does not use
propellants. The OTV travels from LEO to LLO, carrying
oad and all of the propellant needed by the Lander.

The Lander makes one round trip from LSB to LLO, carrying
the OTV payload to LSB and delivering a payload from LSB to
the OTV. The OTV then returns to LEO.

————————————————— OTV DESIGN----—cmemmemo

OTV ENGINE DATA:

Isp: 470

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 5.5

OTV MASS (kg):

Dry Mass: 1030

Aerobrake Mass: 8414.974
LOX Tank Mass: 404 .8216
Fuel Tank Mass: 1784.895
Pressure Tank Mass: 0

Total Mass: 11634.69

OTV PROPELLANT CAPACITY (kg):




Total LOX Capacity: 101205.4

LOX Carried for OTV: 80429.53

LOX Carried for Lander: 20775.86

Additional LOX Storage Capability for Return Trip: 0
Fuel Capacity for OTV: 14623.55

Fuel Capacity Carried for Lander: 3777.43

Total Propellant Capacity: 95053.08

Percent of return trip LOX from LSB: 0
Percent of return trip Fuel from LSB: 0]

Payload Capability to LSB: 15873
Return Payload Capability: 15873

Mass Fraction: .8909463

LANDER ENGINE DATA:

Isp: 470

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: 5.5

4

LANDER MASS (kg):

Dry Mass: 1030

Landing Gear Mass: 1841.305
LOX Tank Mass: 83.10345
Fuel Tank Mass: 366.4107
Pressure Tank Mass: 0

Total Mass: 3320.819

LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: 20775.86

Fuel Capacity: 3777.43

Total Propellant Capacity: 24553.29

Percent of Lander LOX supplied from LSB: 0

Percent of Lander Fuel supplied from LSB: 0
Maximum Payload Capability: 8973

Liftoff Payload Capability: 8973

Mass Fraction: .8808637

This data has been stored in a file called: 30BRK.DAT
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RUN

Do you wish to create a data file? L[YJ:Y

What do you wish tao call the data file:3I0OBRKZ.DAT

Do you wish to use an aerobrake? [YJl:Y

Enter the aerobrake mass percent:30

Do you wish to use 2 separate vehicles? [YJ:Y

Enter 1sp for OTV and for lLander:470,470

Enter OTV mass kg (NOT including tanks):1030 ‘
Enter Lander mass kg (NOT including tanks and landing gear):
1070

Enter the maximum payload for BOTY % for Lander:1S52877,152772
Enter the 0/F mixture ratio for the OTV % for ths Land=r:S.%5.5.%
Enter the number of engines % engine thrust for the 0TV:2,3I3I6t
Enter mass for each engine % its thrust structure for QTV:9%
Enter the number of engipes % engine thrust for the Lander:2,37361
Enter mass for each engine % its thrust structure for Lander:9%

A) LOX - HYDRGGEM

E) LOX - ALUMINUM

C) LOX - MMH

D) LOX - SILANE

Choose the type of engine to be used for the OTY and Lander:A,A

Do you wish to use lunar propellants? L[Yl:Y

Enter the percent of fuel % of oxidizer from Moon for Lander:
0,100 :

Enter the percent of fuel % of oxidizer from Moon for OTV:
0,100

Should the ammount of Lunar LOX returned be the driving factor
for the vehicle design® (Y/N):N
Enter the maximum number of engines allowed for the Lander:2

The Lander liftoff payload capability is: 8972

Do you wish to change the engine constraint to allow a
larger payload? (Y/N):N

The Lander does not have the lift capebility to return
& manned capsule and the propellant needed for the 0TV.
Enter a 0 if you wish to increase the number of Lander
trips. Enter a 1 if you wish to increase the number of
Lander engines.O

This i€ a two vehicle configuration which usss Lunar propsllants.
The OTVY travels to LLO carrying a payload and propellant

for the Lander. The Lander makes 2 round-trip(s) from LSE to
LLO. It carriese the OTV payload to LSE and delivers Lunar
propellant to the 0OTV. After Z Lander trip(s), the OTV

departs for LEO, loaded with Lunar propellante.

LUNAF LOX LOADED ONTO DTV AT LSE: 177464.548
LUNAR LOX USED BY OTV: TOS?.157

LUMNAR FLEL USED BY DTV : (]

LUMAR L.OX RETURMED= 12707.28

LED-BASED LOX BURNED: IF08S.72
_________________ AT PERTANM e e

aQTV ENGINE DATAr
Isp: 70
Number of engines:
Thrust per engine (N): IZTet

Mass of each engine % its thrust structure
LOY - Hydrogen engine with MR:

,.

wa
)
[&]

"~

OTY MASS  (kg):

Dry Mass: 1030
fercbrale Mass: &77T.479
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LOX Tank Mass: 196.3429
Fuel Tank Mass: 1298.616
Fressure Tank Mass: (o}

Total Mass: 9258. 438

0TV PROPELLANT CAFACITY (kg):

Total LOX Capacity: 39085.72

LOX Carried for OTV: 390835.72

LOX Carried for Lander: [s)

Additional LOX Storage Capability for Return Trip: ]
Fuel Capacity for 0OTV: 8026.3242

Fuel Capacity Carried for_Lander: $361.44%
Total Fropellant Capacity: 47112.07

Fercent of return trip LOX from LSBE: 1G9
Percent of return trip Fuel from LSB: [o]
Fayload Capability to LSE: 158773

Return Fayload Capability: 15873

Mass Fraction: . 8357574
——————————————— LANDER DESIGN-

LANDER ENGINE DATA:

Isp: 470

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): L]
LOX - Hydrogen engine with MR: 5.5
LANDER MASS (kg):

Dry Mass: 10Z0

Landing Gear Mass: 1846.201

LOX Tank Mass: z.4128

Fuel Tank Mass: J67.7746

Fressure Tank Mass: 0

Total Mass: 3327.788

LANDER FROFPELLANT CAPACITY (kg):

LOX Capacity: 20853.2

Fuel Capacity: 2791.49

Total Fropellant Capacity: 236445, 69

Fercent of Lander LOX supplied fraom LSE: . 100

Fercent of Lander Fuel supplied from LSB: Q

Maxzimum Fayload Capability: 15872

Liftoff Fayload Capability: 897= ,

Tank Structure for Refueling 0OTV: 589.7299%
lMaEE Fraction: sB3108561

This data has been stored in a file called: TOBRKZ.DAT

(=]




SILANE / O OTV & LANDER
Isp =366 sec
O/F =0.78
NO LUNAR PROPELLANTS AVAILABLE
15.9 MT PAYLOAD

15% AEROBRAKE
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RUN

Do you
What d
Do you
Enter
Do you
Enter
Enter
Enter
8340
Enter
Enter
Enter
Enter
Enter
Enter
A) LOX
B) LOX
C) LOX
D) LOX
E) LOX
Choose

Do you
Enter

This i
Lunar

a payl
The La
the OT
the OT

OTV EN
Isp:

Number
Thrust
Mass o

LOX -

wish to create a data file? [Y]:Y

o you wish to call the data file:SILANEI.DAT

wish to use an aerobrake? [Y]:Y

the aerobrake mass percent:15

wish to use 2 separate vehicles? [Y]:Y

Isp for OTV and for Lander:366,366
OTV mass kg (NOT including tanks}:840

Lander mass kg (NOT including tanks and landing gear):

the maximum payload for OTV & for Lander:15873,15873

the O/F mixture ratio for the OTV & for the Lander:.78,.78
the number of engines & engine thrust for the 0TV:2,33361

mass for each engine & its thrust structure for OTV:100
the number of engines & engine thrust for the Lander:2,33361

mass for each engine & its thrust structure for Lander:100
- HYDROGEN

ALUMINUM

- MMH

- SILANE

ALUMINIZED HYDROGEN

the type of engine to be used for the OTV & Lander:D,D

wish to use lunar propellants? [Y]:N
the maximum number of engines allowed for Lander:3

s a two vehicle configuration which does not use
propellants. The OTV travels from LEO to LLO, carrying
oad and all of the propellant needed by the Lander.
nder makes one round trip from LSB to LLO, carrying

V payload to LSB and delivering a payload from LSB to
V. The OTV then returns to LEO. -

GINE DATA:
366
of engines: 2
per engine (N): 33361
f each engine & its thrust structure (kg): 100
Silane engine with MR: .78

OTV MASS (kg):

Dry Ma
Aerobr

ss: 1040
ake Mass: 3345.651

LOX Tank Mass: 355.1737
Fuel Tank Mass: 1138.377
Pressure Tank Mass: 0

Total

Mass: 5879.202

OTV PROPELLANT CAPACITY (kg):




Total LOX Capacity: 88793.42

LOX Carried for OTV: 70998.24 .
LOX Carried for Lander: 17795.19 D-99
Additional LOX Storage Capability for Return Trip: 0]

Fuel Capacity for OTV: 91023.39

Fuel Capacity Carried for Lander: 22814.35

Total Propellant Capacity: 162021.6

Percent of return trip LOX from LSB: 0
Percent of return trip Fuel from LSB: 0
Payload to LSB: 15873

Return Payload Capability: 15873

Mass Fraction: .9649841

LANDER ENGINE DATA:

Isp: 366

Number of engines: 3

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 100
LOX - Silane engine with MR: .78

LANDER MASS (kg):

Dry Mass: 1140

Landing Gear Mass: 2780.538
LOX Tank Mass: 71.18077
Fuel Tank Mass: 228.1435
Pressure Tank Mass: 0

Total Mass: 4219.862

LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: 17795.19
Fuel Capacity: 22814.35

Total Propellant Capacity: 40609.54

. Percent of Lander LOX supplied from LSB: 0

Percent of Lander Fuel supplied from LSB: 0
Payload to LSB: 15873

Liftoff Payload: 10815.26

Mass Fraction: .9058684

This data has been stored in a file called: STILANE1.DAT
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SILANE / O OTV & LANDER
Isp =366 sec
O/F =0.78
LLOX AND LUNAR Si AVAILABLE
15.9 MT PAYLOAD

15% AEROBRAKE
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RUN

Do you wish to create a data file? [Y]:Y

What do you wish to call the data file:SILANE2.DAT

Do you wish to use an aerobrake? [Y]:Y

Enter the aerobrake mass percent:15

Do you wish to use 2 separate vehicles? [Y]:Y

Enter Isp for OTV and for Lander:366,366

Enter OTV mass kg (NOT including tanks):840

Enter Lander mass kg (NOT including tanks and landing gear):

840

. Enter the maximum payload for OTV & for Lander:15873,215873

Enter the O/F mixture ratio for the OTV & for the Lander:.78,.78
Enter the number of engines & engine thrust for the OTV:2,33361
Enter mass for each engine & its thrust structure for OTV:9100
Enter the number of engines & engine thrust for the Lander:2,33361
Enter mass for each engine & its thrust structure for Lander:100

A) LOX - HYDROGEN

B) LOX - ALUMINUM
C) LOX - MMH
D) LOX - SILANE

E) LOX - ALUMINIZED HYDROGEN
Choose the type of engine to be used for the OTV & Lander:D,D

Do you wish to use lunar propellants? [Y]:Y
Enter the percent of fuel & of oxidizer from Moon for Lander:

87.5,100
Enter the percent of fuel & of oxidizer from Moon for OTV:

87.5,100

Should the ammount of Lunar LOX returned be the driving factor

for the vehicle design? (Y/N):N
Enter the maximum number of engines allowed for the Lander:3

The Lander liftoff paylocad capability is: 10729.06
Do you wish to change the engine constraint to allow a
larger payload? (Y/N):N

This is a two vehicle configuration which uses Lunar propellants.
The OTV travels to LLO carrying a payload and propellant
for the Lander. The Lander makes 1 round-trip(s) from LSB to

- LLO. It carries the OTV payload to LSB and delivers Lunar

propellant to the OTV. After 1 Lander trip(s), the OTV
departs for LEO, loaded with Lunar propellants.

LUNAR LOX LOADED ONTO OTV AT LSB: 8762.836
LUNAR LOX USED BY OTV: 1657.103

LUNAR FUEL USED BY OTV : 1858.93

LUNAR LOX RETURNED= 7105.734

LEO-BASED LOX BURNED: 21471.91
----------------- OTV DESIGN-—--——-m—mom—mmmn

OTV ENGINE DATA:
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Isp: 366
Number of engines: 2
Thrust per engine (N): - 33361

Mass of. each engine & its thrust structure (kg):

LOX - Silane engine with MR: .78

OTV MASS (kg):

Dry Mass: 1040 '
Aerobrake Mass: 1900.469
LOX Tank Mass: 85.88765
Fuel Tank Mass: 306.5141
Pressure Tank Mass: 0

Total Mass: 3332.871

OTV PROPELLANT CAPACITY (kg):

Total LOX Capacity: 21471,91

LOX Carried for OTV: 21471.91

LOX Carried for Lander: 0

Additional LOX Storage Capability for Return Trip:
Fuel Capacity for OTV: 27793.66

Fuel Capacity Carried for Lander: 2857.757

Total Propellant Capacity: 49265.57

Percent of return trip LOX from LSB: 100
Percent of return trip Fuel from LSB: 87.5
Payload to LSB: 15873

Return Payload Capability: 15873

Mass Fraction: .9366356

LANDER ENGINE DATA:

Isp: 366
Number of engines: 3
Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg):

LOX - Silane engine with MR: .78

LANDER MASS (kg):

Dry Mass: 1140

Landing Gear Mass: 2780.453
LOX Tank Mass: 71.32962
Fuel Tank Mass: 228.6206
Pressure Tank Mass: 0

Total Mass: 4220.403

LANDER PROPELLANT CAPACITY (kg):

LOX Copacity: 17832.4

100

100




Fuel Capacity: 22862.06

Total Propellant Capacity: 40694.46 D-103
Percent of Lander LOX supplied from LSB: 100

Percent of Lander Fuel supplied from LSB: 87.5

Payload to LSB: 15873

Liftoff Payload: 10729.06

Tank Structure for Refueling OTV: 107.2906

Mass Fraction: .9060355

This data has been stored in a file called: SILANE2.DAT
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Al - H2/ O OTV & LANDER
Isp =400 sec
O/F=31
NO LUNAR .PROPELLANTS AVAILABLE
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RUN

Do you wish to create a data file? [Y]:Y

What do you wish to call the data file:ALUMH1.DAT

Do you wish to use an aerobrake? [Y]:Y

Enter the aerobrake mass percent:15

Do you wish to use 2 separate vehicles? [Y]:Y

Enter Isp for OTV and for Lander:400,400

Enter OTV mass kg (NOT including tanks):840

Enter Lander mass kg (NOT including tanks and landing gear):

840 . ,

Enter the maximum payload for OTV & for Lander:15873,15873

Enter the O/F mixture ratio for the OTV & for the Lander:3.1,3.1
Enter the number of engines & engine thrust for the 0TV:2,33361
Enter mass for each engine & its thrust structure for OTV:140
Enter the number of engines & engine thrust for the Lander:2,33361
Enter mass for each engine & its thrust structure for Lander:140
A) LOX - HYDROGEN

B) LOX - ALUMINUM

C) LOX - MMH

D) LOX - SILANE

E) LOX - ALUMINIZED HYDROGEN

Choose the type of engine to be used for the OTV & Lander:E,E

Do you wish to use lunar propellants? {[Y]:N
Enter the maximum number of engines allowed for Lander:3

This is a two vehicle configuration which does not use

Lunar propellants. The OTV travels from LEO to LLO, carrying
a pavload and all of the propellant needed by the Lander.

The Lander makes one round trip from LSB to LLO, carrying

the OTV payload to LSB and delivering a payload from LSB to
the OTV. The OTV then returns to LEO.

----------------- OTV DESIGN--~-m——mmcmmemme e
OTV ENGINE DATA:

Isp: © 400

Number of engines: 2

Thrust per engine (N): 33361

-Mass of each engine & its thrust structure (kg): . . 140

LOX - Aluminized Hydrogen engine with MR: 3.1

OTV MASS (kg):

Dry Mass: 1120

Aerobrake Mass: 3645.,597
LOX Tank Mass: 533.3873
Fuel Tank Mass: 2580.907
Pressure. Tank Mass: 0

Total Mass: 7879.891
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OTV PROPELLANT CAPACITY (kg):

Total LOX Capacity: 133346.8

LOX Carried for OTV: 104897.9

LOX Carried for Lander: 28448,92

Additional LOX Storage Capability for Return Trip: 0
Fuel Capacity for OTV: 33838.04

Fuel Capacity Carried for Lander: 9177.072

Total Propellant Capacity: 138735.9

Percent of return trip LOX from LSB: 0
Percent of return trip Fuel from LSB: 0
Payload to LSB: 15873

Return Payload Capability: 15873

Mass Fraction: .9462549

LANDER ENGINE DATA:

Isp: 400

Number of engines: 3

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 140

LOX - Aluminized Hydrogen engine with MR: 3.1

LANDER MASS (kg):

Dry Mass: 1260

Landing Gear Mass: 2780.802
LOX Tank Mass: 113.7957
Fuel Tank Mass: 550.6243
Pressure Tank Mass: 0

Total Mass: 4705.222

LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: 28448.92
Fuel Capacity: 9177.072

Total Propellant Capacity: 37625.99

Percent of Lander LOX supplied from LSB: 0

Percent of Lander Fuel supplied from LSB: 0

Payload to LSB: 15873

Liftoff Payload: 13316.41

Mass Fraction: .8888475

This data has been stored in a file called: ALUMH1.DAT

Setnem @2 Al O aWEs s O aslas e
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RUN

Do you wish to create a data file? [Y]:Y

What do you wish to call the data file:ALUMH2.DAT

Do you wish to use an aerobrake? [Y]:Y

Enter the aerobrake mass percent:15

Do you wish to use 2 separate vehicles? [Y]:Y

Enter Isp for OTV and for Lander:400,400

Enter OTV mass kg (NOT including tanks):840

Enter Lander mass kg (NOT including tanks and landing gear):

840

Enter the maximum payload for OTV & for Lander:15873,15873

Enter the O/F mixture ratio for the OTV & for the Lander:3.1,3.1
Enter the number of engines & engine thrust for the OTV:2,33361
Enter mass for each engine & its thrust structure for OTV:140
Enter the number of engines & engine thrust for the Lander:2,33361
Enter mass for each engine & its thrust structure for Lander:140
A) LOX - HYDROGEN

B) LOX - ALUMINUM

C) LOX - MMH

D) LOX - SILANE

E) LOX - ALUMINIZED HYDROGEN

Choose the type of engine to be used for the OTV & Lander:E,E

Do you wish to use lunar propellants? [Y]:Y

Enter the percent of fuel & of oxidizer from Moon for Lander:
40,100

Enter the percent of fuel & of oxidizer from Moon for OTV:
40,100

Should the ammount of Lunar LOX returned be the driving factor
for the vehicle design? (Y/N):N
Enter the maximum number of engines allowed for the Lander:3

The Lander liftoff payload capability is: 13219.93
Do you wish to change the engine constraint to allow a
larger payload? (Y/N):N

This is a two vehicle configuration which uses Lunar propellants.
The OTV travels to LLO carrying a payload and propellant

for the Lander. The Lander makes 1 round-trip(s) from LSB to
LLO. It carries the OTV.payload to LSB and delivers Lunar

"propellant to the OTV. After 1 Lander trip(s), the OTV

departs for LEO, loaded with Lunar propellants.

LUNAR LOX LOADED ONTO OTV AT LSB: 12646.93
LUNAR LOX USED BY OTV: 3416.214

LUNAR FUEL USED BY OTV : 440.8018

LUNAR LOX RETURNED= 9230.715

LEO-BASED LOX BURNED: 38157.57
----------------- OTY DESIGN---—wce——m—mmme e

OTV ENGINE DATA:
Llsp: 400




Number of engines: 2
Thrust per engine (N): 33361
Mass of each engine & its thrust structure (kg): 140 D-109

LOX - Aluminized Hydrogen engine with MR: 3.1

OTV MASS (kg):

Dry Mass: 1120

Aerobrake Mass: 2207.01
LOX Tank Mass: 152.6303
Fuel Tank Mass: 1109.412
Pressure Tank Mass: 0

Total Mass: 4589.052

OTV PROPELLANT CAPACITY (kg):

Total LOX Capacity: 38157.57

LOX Carried for OTV: 38157.57

LOX Carried for Lander: 0]

Additional LOX Storage Capability for Return Trip: 0
Fuel Capacity for OTV: 12970.1

Fuel Capacity Carried for Lander: 5520.098

Total Propellant Capacity: 51127.67

Percent of return trip LOX from LSB: 100
Percent of return trip Fuel from LSB: 40
Payload to LSB: 15873

Return Payload Capability: 15873

Mass Fraction: .9176359

LANDER ENGINE DATA:

Isp: 400

Number of engines: 3

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 140

LOX - Aluminized Hydrogen engine with MR: 3.1

LANDER MASS (kg):

Dry Mass: 1260

Landing Gear Mass: 2780.794
LOX' Tank Mass: 114.082
Fuel Tank Mass: 552.0097
Pressure Tank Mass: 0

Total Mass: 4706.886

LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: 28520.5



Fuel Capacity: 9200.162

D-110 Total Propellant Capacity: 37720.67
Percent of Lander LOX supplied from LSB: 100
Percent of Lander Fuel supplied from LSB: 40

Payload to LSB: 15873
Liftoff Payload: 13219.93
Tank Structure for Refueling OTV: 132.1993

Mass Fraction: .8890606

This data has been stored in a file called: ALUME2.DAT

ORIGINAL PAGE IS
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H/ O OTV & LANDER
Isp =470 sec
LLOX AVAWLABLE
15.9 MT PAYLOAD

15% AEROBRAKE
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- No. of Lander Trips:

RUN

Do you wish to create a data file? [Y]:Y

What do you wish to call the data file:)LLLOXR.DAT

Do you wish to use an aerobrake? [Y]:Y

Enter the aerobrake mass percent:15

Do you wish to use 2 separate vehicles? [Y]:Y

Enter Isp for OTV and for Lander:470,470

Enter OTV mass kg (NOT including tanks):840

Enter Lander mass kg (NOT including tanks and landing gear):
840

Enter the maximum payload for OTV & for Lander:15873,15873
Enter the O/F mixture ratio for the OTV & for the Lander:5.5,3.5
Enter the number of engines & engine thrust for the O0TV:2,33361
Enter mass for each engine & its thrust structure for OTV:95
Enter the number of engines & engine thrust for the Lander:2,33361
Enter mass for each engine & its thrust structure for Lander:95
A) LOX - HYDROGEN

B) LOX - ALUMINUM

C) LOX - MMH

D) LOX - SILANE

E) LOX - ALUMINIZED HYDROGEN

Choose the type of engine to be used for the OTV & Lander:A,A

Do you wish to use lunar propellants? [Y]:Y

Enter the percent of fuel & of oxidizer from Moon for Lander:
0,100

Enter the percent of fuel & of oxidizer from Moon for OTV:
0,100

Should the ammount of Lunar LOX returned be the driving factor
for the vehicle design? (Y/N):Y

Enter the minimal ammount of Lunar LOX you wish to return as

a percent of the LEO-based LOX which is burned:100

Enter the maximum number of engines allowed for the Lander:2

The Lander liftoff payload capability is: 9056.048
Do you wish to change the engine constraint to allow a
larger payload? (Y/N):N .
No. of Lander Trips:
No. of Lander Trips:
No. of Lander Trips:
No. of Lander Trips:
No. of Lander Trips:

No. of Lander Trips:
No. of Lander Trips:
No. of Lander Trips:

===’(:==========================

OO0 BN

This is a two vehicle configuration which uses Lunar propellants.
The OTV travels to LLO carrying a payload and propellant

for the Lander. The Lander makes 10 round-trip(s) from LSB to
LLO. It carries the OTV payload to LSB and delivers Lunar
propellant to the OTV. After 10 Lander trip(s), the OTV

departs for LEO, loaded with Lunar propellants.
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LUNAR LOX LOADED ONTO OTV AT LSB: 89654 .88
LUNAR LOX USED BY OTV: 20190.58

LUNAR FUEL USED BY OTV : 0

LUNAR LOX RETURNED= 69464.3

LEO-BASED LOX BURNED: 69379.13
----------------- OTV DESIGN-=-mmmmmmmmmmmm e

OTV ENGINE DATA:

Isp: 470

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg):
LOX - Hydrogen engine with MR: 5.5

OTV MASS (kg):

Dry Mass: 1020

Aerobrake Mass: 13544.54
LOX Tank Mass: 267.2478
Fuel Tank Mass: 3327.25
Pressure Tank Mass: 0

Total Mass: 18199.04

OTV PROPELLANT CAPACITY (kg):

Total LOX Capacity: 74311.93

LOX Carried for OTV: 69379.13

LOX Carried for Lander: 0

Additional LOX Storage Capability for Return Trip:
Fuel Capacity for OTV: 16285.4

Fuel Capacity Carried for Lander: 18016.15
Total Propellant Capacity: 82664.53

Percent of return trip LOX from LSB: 100
Percent of return trip Fuel from LSB: 0
Pavload to LSB: 15873

Return Pavload Capability: 15873

Mass Fraction: .8247794

LANDER ENGINE DATA:

Isp: 470
Number of engines: 2
Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg):

LOX - Hydrogen engine with MR:

LANDER MASS (kg):

Pry Mass- 1030

95

4932.797

D-113



Landing Gear Mass: 1853.881

L0OX Tank Mass: 83.621083
D-114 Fuel Tank Mass: 368.6966

Pressure Tank Mass: 0

Total Mass: 3336.2

LANDER PROPELLANT CAPACITY (kg):

LOX Capacity: 20905.48

Fuel Capacity: 3800.996

Total Propellant Capacity: 24706.48

Percent of Lander LOX supplied from LSB: 100

Percent of Lander Fuel supplied from LSB: 0
Payload to LSB: 15873

Liftoff Payload: 9056.048

Tank Structure for Refueling OTV: 90.56048

Mass Fraction: .8810313

This data has been stored in a file called: LLOXR.DAT

ORIGINAL PAGE IS
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INTRODUCTION

The ASTROSIZE Program is an in-house computer analysis tool developed at
Astronautics Corporation of America which allows the user to quickly size a
space vehicle and estimate the propellant requirements for a round-trip mission
to any destination. When planning a mission, it is often difficult to define
the effects of transportation system parameters on the actual size of a vehicle
when the vehicle is adapted to the mission. ASTROSIZE allows the user to see
the effects of these parameters on the vehicle size and the preliminary pro-

pellant requirement estimate., Figure 1 is a flow diagram of the program.

The major inputs, a sample output, as well as future program development

plans are discussed in the following pages.

Major Inputs

The major inputs for ASTROSIZE consist of vehicle parameters and engine
parameters. The vehicle parameters define the vehicle design, excluding the
engines. They include, vehicle subsystem mass, payload capability, tank mass
parameters, aerobrake percent of reentry mass and landing gear percent of
landing mass. The vehicle subsystems mass is the mass of the vehicle without
tanks, engines, and engine thrust structures. The payload capability is simply,
the maximum payload which the vehicle can carry. A tank parameter is the mass
of the tank divided by the mass of the propellant which the tank holds. This

ratio is currently assumed to be linear and the program contains a small data

.base of values for some commonly used propellants. The user simply specifies

the type of propellant to be used and the tank parameter will be assigned accor-
dingly. The aerobrake mass is determined as a percent of the vehicle mass upon

reentering the atmosphere.

.Astronautics CORPORATION OF AMERICA — TECHNOLOGY CENTER



E-4

VEHICLE PARAMETERS
Subsystem Mass

Aerobrake (% of RM)
Payload

Landing Gear %
Tank Parameters

FLIGHT PARAMETERS
AVs
Staging
Propellant Sources
Basing Nodes

INPUTS

v

CALCULATE

N

Max Fuel and Max Oxidizer During Flig

Propeilant Requirements for Stages
J

UPDATE VEHICLE SIZES

Tanks
Aerobrake
Landing Gear

ENGINE PARAMETERS

Thrust

Mass

Isp

Type of Propeilant

O/F Ratio

SIZE

Tanks
Landing Gear
Aerobrake

lterate

propulsion system
CALCULATE

Engines
Payload Capability

design, performance
<4— and traffic model
analysis code

FLIGHT DESCRIPTION

OF VEHICLE FILE
Type of Vehicle

Staging
Basing Nodes
Propellant Sources

FIGORE 1.

Thrust / Mass Ratio
Proper Number of Engines

'

VEHICLE DESCRIPTION FILE
Payload Capability
Propellant Capacity
Mass Characteristics
Mass Fraction

Astrosize Flow Diagram
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The second major input, engine parameters, include engine thrust, mass,
Isp, propellant type and O/F ratio. The engine thrust and mass contribute to
determining how many engines will be needed for a given flight. From this
information the size of the tanks can be calculated. The user can quickly
determine the major design drivers for a vehicle, designed for a lunar mission,

by simply varying the input parameter values.

Sample OQutput

Figure 2. contains a sample output for a round-trip mission to the moon.
The mission uses two vehicles, an OTV and a lander. Both of the vehicles have
LOX Hydrogen engines and use propellants from the moon. The output begins with
a brief description of the mission, describing payload exchanges. This is
followed by a list of data concerning lunar propellants which have been used or

transported as well as the amount of oxygen needed from LEO.

The vehicle data follows under the headings, OTV Design and Lander Design.
Each of these is broken down into 3 categories: engine data, vehicle mass data,
and propellant capacity data. The remaining information for each vehicle con-
sists of the percent of fuel and oxidizer taken from the propellant source, the
payloads carried, and the mass fraction. This information is then stored in a

data file which the user has specified.

Astrosize Operation

ASTROSIZE is run on an IBM PC/XT/AT or compatible. The program 1is

currently written in advanced BASIC but will be converted to FORTRAN, in the

near future.

Astronautiw CORPORATION OF AMERICA — TECHNOLOGY CENTER



FIGURE 2. Astrosize Sample Output

This is a two vehicle configuration which does not use

Lunar propellants. The OTYV travels from LEO to LLO, carryving
s payload and all of the propellant needed by the Lander.

The Lander zakes one round trip from LSB to LLO, carrving

the OTV pavload to LSB and delivering a pnyload from L38 to
the OTV. The OTV then returans to LEO.

----------------- GTV DESIGN-==eomomemmmeeoae

OTY ENGINE DATA:

Isp: 470

Number of engines: 2

Thrust per engine (N): 33361

Mass of each engine & its thrust structure (kg): 95
LOX - Hydrogen engine with MR: S.5

TV MASS  (kg):

Dry Mass: 1030

Aerobrake Mass: 3410.811

LOX Tank Mass: 367.044

Fuel Tank Mass: 1618.23
0

Pressure Tank Mass:

Total Mass: 6426.185

OTV PROPELLANT CAPACITY (kg):

Total LUA Lapacity: Y1/0U.9Y

LOX Carried for OTV: 70985.12

LOX Carried for Lander: 20775.86

Additional LOX Scorage Capubili:y for Return Trip: 0
Fuel Capacity for QTV: 12906.29

Fuel Capacity Carried for Lander: 3777.43

Total Propellant Capacity: 83861.52

Percent of retura trip LOX from LSB: 0
Percent of return trip Fuel froa LS3: 0

Payload Capabilicy to LS2: 15373
Return Payload Capability: 15873

Mags Fraction: .9288491

LANDER ENGINE DATA:

Isp: 470

Nuaber of engines: P

Thrusct per engine (MN): 333561

Mass of each engine & its thrust structure (xg): 93

LCYX - Hydrogen engine with MR: 5.5

LANDER MaSS  (kg):

Dry Mass: 1030
tLanding Gear Mass:
LCX Tank Mass:

Fuel Tank Mass:
Pressure Tank Mass:

Total Mass: 3320.819

LANDER PRCPELLANT CAPACITY (xgzg):

LOX Capacity:
Fuel Capacity:

Tortal Propellant Capacity:

Percent of Lander LOX supplied from L3%:

Percent of Lander Fuel supplied from LS3: Q
Maximum Pavlioad Capability: £973

Liftoff Pavload Capabdilicy: 8073

Mass Fracrion: .2808627

Astronautiw CCRPORATION OF AMERICA —TECHNOLOGY CENTER
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INTRODUCTION

The ASTROFEST Program is an in~house computer analysis tool developed at
Astronautics Corporation of America to manifest the flight and resource
requirements for long-term, multiple flight, space missions, ASTROFEST allows
the user to choose the type of vehicle or vehicles, to be used for the mission,
from a set of vehicle data files. These data files can be created by another
program, developed at Astronautics, called ASTROSIZE. ASTROFEST considers the
propellant requirements from the flights as well as equipment and consumable
requirements for the production of lunar propellants, used during the mission.
The output lists these requirements for each year as well as the total require-
ments for the complete mission., ASTROFEST allows the user to identify the most
efficient vehicle, and the resource requirements for a multi-flight mission to
the moon. Figure 1 is a flow diagram of the program. The major inputs and a

sample output of the program are discussed in the following pages.

Major Inputs

The major inputs for ASTROFEST consist of, a list of the mass to be deli-
vered to the moon each year, the name of the vehicle to be used in the mission
and the slope and y intercept of a function describing lunar propellant pro-
cessing. The first input, a data file created by the user, includes three
columns. The first column lists the years in which flights will be made to the
moon. The second column contains the bulk mass which must be delivered to the

moon for the corresponding year. Finally, the third column is the number of

‘manned flights which are planned for the corresponding year. (A manned capsule

is assumed to have a mass of 6900 Kg.) The second input, the vehicle name

entered by the user, must match with the name of a vehicle data file which was

AstronautiCS CORPORATION OF AMERICA — TECHNOLOGY CENTER
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READ FROM FILE CREATED 8Y

MISSION MODEL DATA LUNAR PROPELLANT PROCESS FUNCTION PARAMETERS
YEAR INITIAL AND OPERATIONAL RESUPPLY / EQUIPMENT MASS
MASS TO BE DEUVERED TO MOON AND YEAR INWHICH TO DELIVER
NUMBER OF MANNED FLIGHTS |

~e=r

GNNUAL MISSION MODEL DATA)

/

CHANGE VEHICLE
AN o « DIVIDE MASS EQUALLY OVER
' MINIMUM NUMBER OF FLIGHTS POSSIBLE
« CALCULATE PROPELLANT REQUIREMENTS
FROM EACH PROPELLANT SOURCE LOCATION
- ACCUMULATE TOTAL
MASS REQUIREMENTS - CALCULATE ADDITIONAL
SUPPORT MASS NEEDED
TERATE) | TOPRODUCE PROPELLANT
REQUIRED FOR SOURCE
LOCATION

X

¢ « ADD SUPPORT MASS TO
ANNUAL MISSION MODEL
MASS

YEARLY DESCRIPTION OF MISSION AND RESOURCE REQUIREMENTS
YEAR
NUMBER OF FUGHTS
NUMBER OF MANNED FLIGHTS
PROPELLANT MASS VS. SOURCE LOCATION
SUPPORT AND EQUIPMENT MASS VS. SOURCE LOCATION

TOTAL EARTH LAUNCH MASS
—

TOTAL DESCRIPTION OF MISSION AND RESOURCE REQUIREMENTS
TOTAL NUMBER OF FUGHTS
TOTAL NUMBER OF MANNED FLIGHTS
TOTAL PROPELLANT AND EQUIPMENT MASS VS. SOURCE LOCATION
TOTAL SUPPORT AND EQUIPMENT MASS VS. SOURCE LOCATION
TOTAL EARTH LAUNCH MASS

FIGURE 1. Astrofest Flow Diagram
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created by another program called ASTROSIZE. ASTROFEST is designed to read the
output, which contains vehicle size and performanée data, from the program
ASTROSIZE. If a vehicle which utilizes lunar propellants is chosen, the user
must provide the slope and y intercept of the function which describes resource
requirements for lunar propellant processing. The process function is assumed
to be linear. The y intercept 1is the mass of the initial equipment and
materials necessary to set up a lunar propellant processing base. The slope is
the mass of coansumables needed to be replaced per mass of propellant produced.
For example, if a LOX Hydrogen OTV and Lander is chosen, and lunar LOX is to be
used during the mission, the user must specify the slope and y intercept of a
function describing the production of lunar LOX. By using different vehicle
types with their corresponding process function, the user can identify the most

efficient vehicle to use for the mission and the resource requirements.

Sample Qutput

Figure 2. contains a sample output for a LOX Hydrogen OTV and Lander which
utilizes lunar LOX. The output lists the annual and total values of the lunar
propellants used, the Earth propellants used, the number of flights and number
of unmanned flights, the mass delivered to the moon, the additional burdened mas
and the mass required from the Earth. The additional burdened mass is the mass
of equipment and consumables required to produce the lumar propellants which
were used. All values, except the number of flights and number of manned

flights, are expressed in Kilograms.

ASTROFEST Operation

ASTROFEST is run on an IBM PC/XT/AT or compatible, The program 1is

currently written in advanced BASIC but will be converted to FORTRAN in the near

Astronautics CCRPCRATION OF AMERICA — TECHNOLOGY CENTER
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wN

Zater the name of the data file for the l
nicle vou wish to use:BASE.DAT

Znter slope and Y-intercept of process function: 00,2300
1) OTV & Lander: Lunar propellants available

BY OTV & Lander: Lunar propellants not available !
C) Integrated OTV/Lander: Lunar propellants available {
D) Integrated OTV/Lander: Lunar propellants not available
Choose which type of configuration vou will use:B

Enter the year which you wish to deliver equipment:2005

Vear: 1995

Earth Propellant: 136704.5
farch LOX: 115673.1

Zarth Fuel: 21031.47

Carth Fuel for Lander: 5696:0?
Earth Fuel for OTV: 16335.44
Lunar Propellant:0

Total Propellant: 136704.5

Numper of Fligntsi 2
Number of Manned Flights: Q
2

Mass Delivered (kg): 2700
Additional Burdened Mass (kg): o}
Mass Required From Earth (kg): 159404.5
Year: 1996
Farth Propeilant: 136704.5
Earch LOX: 115673.1
Zarta Fuel: 21031.47
Earth Fuel for Lander: 4696.0?1
Earth Fuel for OTV: 16335.34%
Lunar Propellant:0
Total Propellant: 136704.5
Number of Flights: 2
Number of Manned Flights: Q
‘Mass Delivered (kg): 22700
Additional Burdened Mass (kg): 0 .
Mass Required From Earth (kg): 159404.3
Year 1999
Earth Propeilant: 56640.75
farch LOX: 47926.79
Zarth Fuel: 8713.959
for Lander: 1907.151
for OTV: 6806.308
~unar Propellanc:0
Total Propellant: 56640
Number of Tlights: 1
Numder of Mannred Flights: s]
Mass Delivered (kg): 3200
idditional Burdened Mass (kg): 0
Mass Required From Earth (kg): 64850.73
Vear: 2003
fropellant: L33903.5
LoX: 535764.42
fuel: 10138.99
fTarcth fuel for Lander: 2315.007
Zarth fuel for OTV: 7823.979
_unar Propellant:Q
Total Propeilant: 65903.4
“umber of Flights: 1
Nunter of Manned Flights: 1
Mass Delivered (kgh: LY-100]
Additional Burdened Mass (k3): 0 |
Mass Required From Earth (kg): TIT03.4 |

Year: 2004

rth Propellant:
ch LOY: 5376442
= 10128.99

65003.4

FIGURE 2.

Eartn Fuel for Lander:
Earth Fuel for OTV:
Lunar Propellant:0
Total Propellant:

Number of Flights:

Number of Manned Flights:

Mass Delivered (kg):

2215.007
7823.979

63903.4

Additional Burdened Mass (kg): ]

Mass Required From Earch (kg):

Year: 2005
Earth Propellant:
Earth LOX: 380832.7
Earth Fuel: 69242.321
Earth fuel for Lander:
Earth Fuel for OTV:

nar Propellant:0

Vurber of Flieghts:

Nunxber of Manned Flights:

Mass Delivered (kg):

Additional Burdened Mass (kg):
TRg e

Mass Required From Zar:a

Do you wish to use another vehicle after 27¢5° (v
Enter the nazme of the daza
vehicle you wish Co use:i34A.
Enter siope and Y-intercept of process

A) OTV & Lander:
8) OTV &

2) Integrated OTV/Lande

450075.1

i

PRy
[ V)
[= SNy

Ul —
W
[V
>

NEERYY

5100

file for the

Lunar prcpellaﬁ s

24T

funczien:.Z315,2

Lunar propeilantcs avaxlable
Lander: Lunar prop
C) Iategraced OTV./Lander:

avarlable
not availab.

Choose wnich type of configuracion you =11l use:i

Year: 2905

Lunar Propeilant:
Lunar LOX: 120493.2
Lunar Fuel: 0

Earth Propellant:
Earth LOX: 80226.04
Zarth Fuei: 36494,

Nuaber of Flights:

Numper of Manned Flights:

Mass Delivered (kg):

Additional Burdened Mass (kg):
Mass Required From tarth (kg):

fear: 2007

Lurar Progellant:
Lunar LOX: 208G33.%
Lunar Fuei: 0

N

Earth Propellant:
Earcn LOX: 1
Earth fuel: 5

Number of Flights:
Number of Manned Flighe
Mass Deiivered {(kz):
dddiz:onal Burcdenec Mass
Mass Required from

Year: 2008

Lunar Propellant:
Lunar LOX: 137207.4
Lunar Fuel: o}

farth Propeliar
farth LOX: s
farch Fuel: 3
Number of Fliehts:
Numper of Mannen
Mass Delivered ‘g
Additional Burdened

Astrofest Sample Qutput

116720.4

™

208038.9

5
el

Io%.8128
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Mass Required From Earth (kg):

Year: 2009

Lunar Propellant: 453490
Lunar LOX: 453400

Lunar Fuel: 0

Earcth Propellant: 409828.3
Eareh LOX: 277010.1

farth Fuel: 132818.2

Nuaber of Flignars: 11
Number of Manned Flights: 9

Mass Deliverea (kg): 168680.2
Addizional Surdened Mass (kg):
Mass Requirez trom farth (kg):

Year: C10

Lunar Propellanc: 474745.7
Lunar LOX: LTATL5.7

Lunar fuel: Q

farth Propellant: 391417.2
Earth LCX: 138161.4

tarth Fueli: 133255.8

Nuaber of 11
Number of Manned Flights: 6

Mass Deiivered (xg): 169812.1
Additional Burdened Mass (kg):

Mass Requirea From Earth (kg):

Year: o1

Lunar
Lunar
Lunar

fropeilan
LOX:
Fuel: 3

Earth
Earch
Earzh

Propellant:
LoX: 158891.38
Fuel: 72531.16

Nuaber of Flights: 6
Number of Manned Flights:
Mass Deliverea {(kg):

Additional Z.rdened Mass (xg):
Mass Required Frow Earth (kg}:

Year: 2913
Lunar Profeilant: 47474507
_erar LOX: “TeT35.7

391217.2
Nuaoer oi FL P
Nuwber af &

FIGURE 2.

129499.2

680,234
578508.6

360.211
323703.2

I S PEEEE T
K . ce i
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ad
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Mass Delivered (kg): 169612, 1
Additional Burdened Mass (kg):
Mass Required From Earth (kg):

Year: 2014

Lunar Propellant: 23313:.8
Lunar LOX: 2331348

Lunar Fuel: 0

Earth Propellant: 2149158
Earch LOX: 1459R4 .4

Earth Fuel: 68930.75

Number of Flights: 6
Number of Manned Flighrs: )
8

Mass Deiivered (kg): 3149.7
additional Burdered Mass (xg;:

Mass Required from Zarth (kg;:

Year: 2013

Lunar Propellant 305372.7
Lunar LOX: 303373.7

Lunar Fuel: 3

Earta Propellant: 3469410.7
Zarza LOX: 2179054

Zarta Fuel: 131505.3

Numper of Flights: 11
Nuaber of Manned Flights: 1

Mass Delivered (kg): 163458.1

Additional Burdened Mass (kg):
Mass Required From Earth {«g):

sasssnzzazxarn [0TALSessensnannnzna

Total Propellant from Moon: 2847369
Total LOX from Moon: 2847369
Total Fuel from Moon: 0

Total Fuel for OTY {roam Moon:

Total Fuel for lLander from Moon:
Total Propellant from Earth:

Totai LOX from Zarch: 2322315
Total Fuel from Earth: 9641215.2
Total OTV Fuel f-om Farcth: 5358599.:
Tozal lander Fuei from Earza:

Total Propellant: 6117239
Total Numter of ighrs: 73

Total Number of Manned rlights:

Total Mass Delivered (kg): 1152571
Total Addiz:ioral 3urZenea Mass (kg,:
Thra Mace Ranuvred Tram Faree (Lo,

Astrofest Sample Output (Continued)
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712.12¢
561229.4

0.3

758.0623
51.868.8
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APPERDIX F

LURAR MATERIALS COMPOSITION
ARD

RELATED THERMODYNAMIC DATA

F-1



TABLE F.1

CONSTITUENTS OF LUNRAR ORES IN MARE REGOLITH

PYROXENE - 50wt% of Mare Regolith
Ca0°Si0,y
MgQ-8i0,y
Fe0+8i0,y
Al,03°5i0)p

Ti09-8i0y

OLIVIRE - 15wtZ of Mare Regolith
2Mg0-Si09

2Fe0-5i0y

PLAGIOCLASE or ANORTHITE - 20wt%Z of Mare Regolith

Ca0+Al903°28i0)

ILMERITE - 15wt%Z of Mare Regolith

Fe0°Ti09



Oxide
8i0y

Cal

Al703

MgO0
FeO

TiO09

TABLE F.2

OXIDE CONCENTRATIONS (BY WIX) IN MARE REGOLITH

Pyroxene
47.8

18.6
4.9
14.9
9.0

3.5

Olivine

37.4

0.3

0

35.8

27.0

0.1

Anorthite

46.1

18.1

33.7

0.3

0.7

0.2

Ilmenite

2.0

44.9

53.6

Total

44

11

13

17



SILICATE CORCENTRATIONS (BY WTZ) IN MARE REGOLITH

Silicate
Ca0-Si0y
Mg0+Si0,y
Fe0-5i09
Al,903°5i07

Ti0,-81i05

TABLE F.3

Mare Regolith

19.6

16.1

30.4

23.2

8.9



Element

Total

Ca
Mg
Fe
Al
Ti

Si

Na

Mare Reolith

7.9

5.8

13.2

6.8

3.1

20.4

41.3

0.1

0.1

0.3

99.0

TABLE F.4

MAJOR ELEMENTAL COMPOSITION OF LUNAR REGOLITH (WT %)

Highlands

10.7

4.6

4.9

13.3

21.0

44.6

0.072

0.078

0.48

99.7

Basin Ejecta

7.70
6.1
8.7

9.8

21.8
43.3
0.076

0.24

0.38

98.1



Element

Ar
B
Be
c
Cl

Cs

He
Hg

Li

Ne

Total

TABLE F.5

MINOR ELEMENTAL COMPOSITION OF LUNAR REGOLITH (PPM,WT)

_Mare Highlands Basin Ejecta
0.8 1.2 1.0
4.78 22.45 19.0
2.63 1.2 4.15

104.0 106.5 136.7

25.6 17.0 | 25.0
0.39 0.11 0.33
174.3 54.5 139.5
54.8 56.0 76.5
28.5 6.0 8.0

0.014 0.004 -

12.9 6.6 52.3
95.4 98.0 121.0
2.75 1.0 2.0
506.9 370.6 585.5



TABLE F.6

PROPERTIES OF LUNAR ORES IN MARE REGOLITH

Heat of
Melting Point Vaporization

Lunar Ore g/mole (°C) (kWhr/Kg)
Pyroxene 120.5 1557 5.2
Olivine 167.4 1890 3.8
Anorthite 278.0 1557 5.4
Ilmenite 151.7 1367 3.7
Bulk Mare 4.8



TABLE F.7

THERMODYNAMICS OF TRANSFORMATIONS OF LURAR ORES IN MARE REGOLITH

Lunar Ore

ANORTHITE

PYROXENE

Transformation

Ca0+A1703°28i09(s) -> CaO(s) +
Al703(s) + 28i0,(s)

Al203(s) -> 2Aly + 3/20,(g)

Al(1) -> Al(g)

Ca0(s) ~> Ca(l) + 1/205(g)

ca(l) -> ca(g)

25i07(s) -> 28i(s) + 20,(g)

28i(s) => 28i(g)

Ca0-5i0,(s) -> Ca0(s) + Si0y(s)
Si05(s) -> 8i(s) + 0y(g)

Si(s) -> Si(g)

Ca0(s) -> ca(l) + 1/20,(g)
ca(l) -> Ca(g)

Mg0:Si05(s) -> Mg0(s) + Si03(s)
$i05(s) => 8i(1) + 05(g)

8i(l) -> si(g)

Mg0(s) -> Mg(g) + 1/207(g)
Fe0-Si07(s) => FeO(s) + 8i0y(s)
$i09(8) => 8i(1l) + 0,(g)

Si(1) -> si(g)

FeO(s) -> Fe(1) + 1/205(g)
Fe(l) -> Fe(g)

Al503°5i07(8) -> Al703(s) + Si05(s)
Si0y(s) => Si(l) + 02(g)

Si(1) -> si(g)

A1503(s) -> 2AL(1) + 3/2 05(g)
2A1(1) -> 2A1(g)

Ti0,°8i0(8) -> Ti0(s) + Si03(s)
Ti09(s) -> Ti(s) + 02(g)

Ti(s) => Ti(l)

H (Kcal/Mole)

25.3
403.3
69.5
153.0
36.7
433.6
187.8

22.1
216.8
93.9
153.0
36.7
9.8
216.8
93.9
174.4
4.3
216.8
93.9
61.2
83.6
2.1
216.8
93.9
403.3
139.0

224.9
3.7




Lunar Ore

OLIVINE

ILMENITE

Transformation

Ti(l) -> Ti(g)
Si05(s) -> 8i(1) + 02(g)
si(1) -> si(g)

2Mg0-8i07(s) -> 2Mg0(s) + Si0y(s)
$i05(s) -> Si(1) + 0(g)

§i(1) -> si(g)

1Mg0(s) -> 2Mg(g) + 03(g)
2Fe0:5i09(s) -> 2Fe0(s) + Si0y(s) .
2Fe0 -> 2Fe(l) + 05(g)

1Fe(1l) -> 2Fe(g)

8i0y(s) -> 8i(1l) + 0,(g)

si(1) -> si(g)

Fe0:Ti0y(s) -> Fe0(s) + Ti0y(s)
Fe0 -> Fe(l) + 1/202(g)

Fe(l) -> Fe(g)

Ti0y(s) -> Ti(s) + 07(g)

Ti(s) -> Ti(1l)

Ti(l) -> Ti(g)

H (Kcal/Mole)

102.0
216.8
93.9

16.1
216.8
93.9
174.4
8.7
122.4
167.2
216.8
93.9

8.0
61.2
83.6

224.9

3.7

102.0



TABLE F.8

F-10 CHEMICAL PROPERTIES OF CONSTITUENTS OF MARE REGOLITH

Dissociation
Melting Point Boiling Point Energy at 1000K
Constituent (°c) (°c) (KJ/Mole)
Cal 2927 2850 634
$i0,y 1700 2230 902
Mg0 2852 3600 609
Fe0 1379 -- - 269
Alo04 2018 2980 1670
TiOy 1830 - 940
Ti 1670 3289
Fe 1536 2862
Al 660 2520
Mg 649 1088

0, -219 . -183




TABLE F.9

LURAR BASE PROPELLANT PROCESSING REACTIONS F-11

HYDROGEN REDUCTION

1.
2.

Fe0-Ti02(s) + Hp(g) = Fe(s) + Hp0(8) + TiOy(s)
2 Hy0(g) = 2Hy(g) + 02(g)

MAGMA ELECTBROLYSIS

3. Fe0-Ti03(s) = FeO(s) + TiO0y(s)
4. Fe0(s) = Fe(l) + 1/20,(g)
CARBOCHLORINATIOR

5. Alp03(s) + 3C(s) + 3Clp(g) = 2A1C13(g) + 3C0(g)

6. CaO(s) + C(s) + Cla(g) = CaCly(s) + co(g)

7. Si03(s) + 2C(s) + 2Cly(g) = SiClg(g) + 2co(g)

8. FeTiO3(s) + 3C(s) + 3/2C1y(g) = FeCl3(g) + Ti03(s) + 3C0(g)
9. MgO(s) + C(s) + Clp(g) = MgCly(1) + co(g)
10. Ca0-A1203°28i0,(s) + 8C(s) + 8Cla(g) = 2A1Cl3(g) + CaCly(s) + 2SiCl,(g)

+ 8C0(g)

11. AlCL3(1) = Al(1l) + 3/2Cl,(g)

12. c0(g) + 1/202(g) = CO,(g)

13. CO0(g) + Hp(g) = C(s) + H0(1)
14. Hy0 = 2Hy + 09

ACID LEACH .

15. Al03-5i0,(s) + 11HF(1) = 2A1F3°HSiF5(s) + 5Hp0(1)

16. Mg0-Si03(s) + 6HF(1) = MgF,°SiF4(s) + 3H20(1)

17. Fe0-Si0y(s) + 6HF(1) = FeFy°SiF;(s) + 3H70(1)

18. Ca0:5i0(s) + 6HF(1) = CaFp*SiF4(s) + 3H0(1)

19. Ti0y-Si07(s) + 8HF(1) = TiF,°SiF4(s) + 4H,0(1)

20. AlF3(1) + 3Na(l) = Al(l) + 3NaF(1)

21. MgFy(1) + Hp0(1) = Mg0(s) + 2HF(1)

22. 2Mg0(s) + Si(s) + 2Ca0(s) = 2Mg(1l) + Cay5i04(s)

23. FeSiFg(s) + Hp0(1) + electrical emergy = Fe(s) + 30,(g) + 2HF(1) +

SiF4(1)



CARBOTHERMAL
F-12  24. Mg0-5i05(1) + 2CH4(g) = 2C0(g) + 4Ha(g) + Si(1l) + MgO(s)
25. 2C0(g) + 6Hy(g) = 2CH4(g) + 2H0(g)
26. 2Hy0(1) = 2Hy(g) + 02(g)
27. Mg0-Si09(1) = 02(g) + Si(1) + Mg0(s)




TABLE F.10
F-13
PROPELLANT PROCESSING HEATS OF REACTION

Reaction # T (°C) H (KJ/mole)
1 900 42.6
2 249

1370 -72.1
4 1370 267.5
5 725 -1204.5
6 725 -266.8
7 725 65.8
8 725 -370.6
9 725 -99.6
10 725
11 700 1270
12 700 -282.6
13 625 147.2
14 249
15 110 ~2855
16 110 -146
17 110 -131.2
18 110 -107.8
19 110 -416.8
20 900 -500.2
21 1200 103
22 1%00 422.5
23 333.2
24 1625 742
25 250 -412.6

26 249
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APPENDIX G

ADDITIONAL LUNAR SURFACE BASE
PROPULSION SYSTEM STUDY
TECHNOLOGY INFORMATION
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ORIGINAL PAGE IS
OF POOR QUALITY

Technology Plan for LOZ/LSiH4 Engine

Task No.

Demonstrate Low MR Gas Generator with L02 and SiH4 Propellants.
e MR range and turbine inlet temperature

« (Ccmbustion (ignition, C*, and stability)

» longevity with Si0, in gases

2. Subsequently, Demonstrate TPA Turbire.
. Performance
. Longevity of nozzles, blades, rctor and casing
« Seals
e Bearings
3. In Parallel with Task 2 Oemonstrate TCA Injector with LO,/SiHy
Propellants with a Workhorse Combustor.
e Performance
« Longevity (Thermal Compatibility)
4. Demonstrate TCA Cooling (Subsequent to 3).

e Design engine - Determine if SiH, regenerative cooling is
needed. If not: Demonstrate L0, cooling
If so: Demonstrate SiH, cooling
e Heated tube tests for "burnout heat flux"
- SiH4 decomposition conditions determination
» Demonstrate TCA with injector - hot firing

5. Llastly - Demonstrate Engine with Testing.

6. Demonstrate Autogenous Pressurization with SiH,, using Heat ixchanger
in Turbine Exhaust after Task 1 is completad.
«  Heat exchanger performance and longevity with SiQ, in gas

+  SiH, vapor generated (vs. Si salids)
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